

Общество с ограниченной ответственностью «МеталМастер» 115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

Закрытые оптические измерительные линейки с дифракционной решеткой серии КА

Руководство по эксплуатации

Содержание

Оощее описание	1
Руководство по эксплуатации	2
Требования обеспечения безопасности	3
1. Технические характеристики	4
2. Составные части оптической линейки	5
3. Дополнительные элементы конструкции	6
4. Монтаж	9
4.1 Монтажные размеры	9
4.2 Принцип монтажа:	.13
4.3 Монтаж оптической линейки и кожуха	.13
4.4 Монтаж считывающей головки	.18
4.5 Переустановка кабеля считывающей головки (возможность доступна в	
моделях оптической линейки КА-300, КА-500 и КА-600)	.19
5. Правила приемки изделия	.20

Общее описание

Оптическая линейка типа КА-300 широко применима в различных областях. Ее отличает рациональность конструкции, пропорциональность размеров и хорошая жесткость, за счет чего она способна удовлетворить практически все потребности, которые предъявляются со стороны пользователей оборудования. Длина данной оптической линейки составляет 70~1020 мм.

Оптическая линейка типа КА-600, которая предназначена для крупногабаритного металлорежущего оборудования, отличается большим размером и высокой жесткостью. Повысить жесткость и устойчивость можно за счет опор, которые можно установить в любом месте оптической линейки. Длина оптической линейки составляет 1000~3000 мм.

Оптическая линейка типа КА-500 является мини-версией оптической линейки, которая специально предназначена для малогабаритного оборудования пользователей, располагающих ограниченным рабочим пространством. Данная модель оптической линейки подойдет для тех заказчиков, у которых имеются требования к месту установки. Длина оптической линейки составляет 70~470мм.

Оптическая линейка типа КА-200 представляет собой модель миниатюрной оптической линейки, меньшей по размеру, чем линейка модели КА-500. Она была разработана на базе оптической линейки типа КА-500 с оптимизацией элементов внутренней и внешней конструкции. Данная оптическая линейка пригодна для использования в зоне с еще более ограниченными размерами. Длина оптической линейки составляет 30~360 мм.

Руководство по эксплуатации

- Перед эксплуатацией пользователь должен обязательно ознакомиться с общим описанием, требованиями обеспечения безопасности, а также остальной информации документа, представленной в разделах 1~3.
- Помимо изучения информации, которая содержится в общем описании, требованиях обеспечения безопасности и разделах 1~3, технические специалисты по выполнению монтажных, испытательных и ремонтных работ обязаны тщательно изучить информацию, изложенную в разделах 4~5.
- Данные инструкции по эксплуатации применяются только к интегрированным оптическим линейкам серии КА.
- Просим ознакомиться с требованиями обеспечения безопасности, изложенными ниже. Это крайне важная информация, которую нужно знать для обеспечения безопасной эксплуатации Вашей оптической линейки.

Требования обеспечения безопасности

Внимание:

- Во избежание поражения электрическим током или возникновения пожара необходимо принять меры, чтобы в оборудование, которое подключено к оптической линейке, не попадала влага, а также предотвращать непосредственные взаимодействия с охлаждающими жидкостями.
- Оптическая линейка является прецизионным измерительным прибором. Для обеспечения надежной работы оптическая линейка никогда не должна подвергаться воздействию колебаний и ударов.

Предупреждение:

 Для предотвращения смещения установочного положения оптической линейки и во избежание поражения электрическим током запрещается открывать герметично закрытые части оптической линейки. В составе прибора отсутствуют компоненты, которые могут требовать ремонтного вмешательства со стороны пользователя. В случае необходимости в выполнении ремонта необходимо обращаться к квалифицированным техническим специалистам.

Примечания:

- В случае обнаружения дыма или нехарактерного запаха в районе считывающей головки оптической линейки следует немедленно отключить источник питания. Поскольку оптическая линейка с цифровым дисплеем представляет собой прецизионный измерительный прибор, продолжение использования оптической линейки в случае возникновения вышеуказанных явлений может привести к возгоранию дисплея или к его поражению электрическим током. В подобном случае следует обратиться в компанию «LOK SHUN CNC EQUIPMENT LTD.» или к торговому представителю компании. Запрещается самостоятельно ремонтировать оптическую линейку.
- Если во время использования прибора поврежден кабель, соединяющий оптическую линейку с цифровым дисплеем, результатом может стать ошибка в измерениях. Пользователь должен обращать особое внимание на состояние данного кабеля.
- Запрещено самостоятельно производить ремонт или вносить изменения в конструкцию оптической линейки, поскольку это может привести к поломке, неточной работе прибора или его повреждению.

С Датчики перемещений соответствуют требованиям директивы ЕС 2006/95/ЕС «О низковольтном электрическом оборудовании» и директивы ЕС 2004/108/ЕС «Об электромагнитной совместимости».

Компания получила разрешение на производство продукции и прошла необходимые проверки на соответствие требованиям стандартов ISO9001 «Система менеджмента качества», ISO14001 «Системы экологического менеджмента», а также стандарту OHSAS18001 «Системы менеджмента охраны здоровья и обеспечения безопасности труда».

Руководствуясь принципом обеспечения простоты в установке, использовании и техническом обслуживании, компания «LOK SHUN CNC EQUIPMENT LTD.» разработала оптические линейки серии KA с акцентом на оптимизацию конструкции и гарантии точности измерений. Нашу продукцию отличает точность измерения, соответствующая стандартам, хорошая жесткость, плоскостность и герметичность, а также рациональность конструкции. Применение универсальных приспособлений и запасных частей упрощает процесс монтажа и ремонта, за счет чего значительно сокращается время и усилия, затрачиваемые на монтаж прибора. Для упрощения работы с прибором необходимо внимательно ознакомиться с информацией, изложенной в рамках настоящего документа.

1. Технические характеристики

- 1.1 Цена деления: 0,02 мм (50 штрихов/мм)
- 1.2 Дискретность: 0,5 мкм, 1 мкм, 5 мкм.
- 1.3 Точность: ±3 мкм, ±5 мкм и ±15 мкм (при 20±0,1°С)
- 1.4 Диапазон измерений: 30~3000 мм
- 1.5 Скорость перемещения: Высокоскоростной прибор Стандартный прибор

120 м/мин (под заказ) 60 м/мин

- 1.6 Электропитание: +5 В±5%, 80 мА
- 1.7 Стандартная длина кабеля: 3 м (возможно изготовление кабеля другой длины, исходя из требований заказчика)¹
- 1.8 Рабочая температура: 0~45°С
- 1.9 Распиновка разъема:
- 1) Используется для: 9-контактного разъема EIA-422-А для вывода сигналов

	1	<u>5</u> ر
	6000	3
FG	<u>ه ه ه م</u> \ک	\mathcal{P}
	6	9

Положение	1	2	3	4	5	6	7	8	9
контакта									
Сигнал	Ā	OV	\overline{B}	He	Ī	A	+5B	В	Ζ
				используется					
Цвет	Черно-	Черный	Оранжево-	FG	Бело-	Зеленый	Красный	Оранжевый	Белый
	зеленый		черный		черный				

FG: Кабельный экран подсоединен к металлическому кожуху.

 Используется для: 9-контакти 	го разъема TTL для вывода сигналов
--	------------------------------------

	, ,			1		1.1			
Положение	1	2	3	4	5	6	7	8	9
контакта									
Сигнал	He	OV	He	He	He	A	+5B	В	Ζ
	используется		используется	используется	используется				
Цвет	-	Черный	-	FG	-	Зеленый	Красный	Оранжевый	Белый

FG: Кабельный экран подсоединен к металлическому кожуху.

3	Используется лля.	7-контактного	разъема ТТГ.	лля вывола	сигнало
5	I FIGHUMDSYCIUM A M I M M I	/-коптактного		для обода	сип пало

- /				- r	r +-		
Положение	1	2	3	4	5	6	7
контакта							
Сигнал	OV	He	A	В	+5B	Ζ	Экран
		используется					
Цвет	Черный	-	Зеленый	Оранжевый	Красный	Белый	-

1.10 Форма сигнала:

Вывод сигнала через разъем TTL

Вывод сигнала через разъем EIA-422-А

¹ Стандартная длина кабеля для оптической линейки типа КА -200: 2 м.

Положение нулевой точки: одна на каждые 50 мм. 1.11

1.12	Цикл выходного	импульсного сигнала	оптическ	ои линеики	(PW)	•

1.12 ЦИКЛ ВЫЛ	1.12 Цикл выходного импульеного енгнала онти теской лиценки							
Разрешение	Эквивалент одного импульса (PW)							
5 мкм	20 мкм							
1 мкм	4 мкм							
0,5 мкм	2 мкм	_						

2. Составные части оптической линейки

Оптическая линейка состоит, главным образом, из корпуса линейки и считывающей головки (см. рис. 1).


```
    Корпус оптической линейки
    Кабель
    Считывающая головка
    Соединительная пластина для крепления считывающей головки
```

3. Дополнительные элементы конструкции

Для монтажа и бесперебойной работы оптической линейки наша компания разработала следующие элементы конструкции:

Т-образный кронштейн типа А


```
Т-образный кронштейн типа Е
```

Рис. 15

4. Монтаж

4.1 Монтажные размеры

Модель	LO	L1	L2	Модель	L0	L1	L2
KA300-70	70	160	176	KA300-570	570	660	676
KA300-120	120	210	226	KA300-620	620	710	726
KA300-170	170	260	276	KA300-670	670	760	776
KA300-220	220	310	326	KA300-720	720	810	826
KA300-270	270	360	376	KA300-770	770	860	876
KA300-320	320	410	426	KA300-820	820	910	926
KA300-370	370	460	476	KA300-870	870	960	976
KA300-420	420	510	526	KA300-920	920	1010	1026
KA300-470	470	560	576	KA300-970	970	1060	1076
KA300-520	520	610	626	KA300-1020	1020	1110	1126

L0: Фактическая длина измерения оптической линейки L1: Размер отверстия для монтажа оптической линейки

L2: Габаритные размеры оптической линейки

Габаритные размеры оптической линейки типа КА-600

			1 110	1 1 1			
Модель	LO	L1	L2	Модель	LO	L1	L2
KA600-1000	1000	1150	1170	KA600-2100	2100	2250	2270
KA600-1100	1100	1250	1270	KA600-2200	2200	2350	2370
KA600-1200	1200	1350	1370	KA600-2300	2300	2450	2470
KA600-1300	1300	1450	1470	KA600-2400	2400	2550	2570
KA600-1400	1400	1550	1570	KA600-2500	2500	2650	2670
KA600-1500	1500	1650	1670	KA600-2600	2600	2750	2770
KA600-1600	1600	1750	1770	KA600-2700	2700	2850	2870
KA600-1700	1700	1850	1870	KA600-2800	2800	2950	2970
KA600-1800	1800	1950	1970	KA600-2900	2900	3050	3070
KA600-1900	1900	2050	2070	KA600-3000	3000	3150	3170
KA600-2000	2000	2150	2170				

L0: Фактическая длина измерения оптической линейки L1: Размер отверстия для монтажа оптической линейки

L2: Габаритные размеры оптической линейки

Модель	LO	L1	L2	Модель	LO	L1	L2
KA500-70	70	172	182	KA500-320	320	422	432
KA500-120	120	222	232	KA500-370	370	472	482
KA500-170	170	272	282	KA500-420	420	522	532
KA500-220	220	322	332	KA500-470	470	572	582
KA500-270	270	372	382				

L0: Фактическая длина измерения оптической линейки L1: Размер отверстия для монтажа оптической линейки

L2: Габаритные размеры оптической линейки

Габаритные размеры оптической линейки типа КА-200

Оптическая измерительная линейка с дифракционной решеткой (Указания по эксплуатации)

Рис. 19

Модель	LO	L1	L2	Модель	LO	L1	L2
KA200-30	30	125	133	KA200-160	160	255	263
KA200-40	40	135	143	KA200-170	170	265	273
KA200-50	50	145	153	KA200-180	180	275	283
KA200-60	60	155	163	KA200-190	190	285	293
KA200-70	70	165	173	KA200-200	200	295	303
KA200-80	80	175	183	KA200-220	220	315	323
KA200-90	90	185	193	KA200-240	240	335	343
KA200-100	100	195	203	KA200-260	260	355	363
KA200-110	110	205	213	KA200-280	280	375	383
KA200-120	120	215	223	KA200-300	300	395	403
KA200-130	130	225	233	KA200-320	320	415	423
KA200-140	140	235	243	KA200-340	340	435	443
KA200-150	150	245	253	KA200-360	360	455	463

L0: Фактическая длина измерения оптической линейки L1: Размер отверстия для монтажа оптической линейки

L2: Габаритные размеры оптической линейки

Примечания: (1) Выбор измерительного диапазона оптической линейки зависит от длины рабочего хода станка. Измерительный диапазон оптической линейки должен быть больше максимальной длины рабочего хода станка.

(2) Запасные части необходимо выбирать в соответствии с длиной и заданной монтажной поверхностью.

(3) Для крепления оптической линейки типа КА-600 через каждые 1000 мм необходимо устанавливать подвесные пластины, т.е. 2 пластины при 1000≤ L <2000, 3 пластины при 2000≤ L <3000 и 4 пластины при L=3000.

4.2 Принцип монтажа:

(1) Контрольным параметром при установке оптической линейки является положение направляющей станка, линейка должна располагаться параллельно направляющей. Центральная точка диапазона измерения оптической линейки должна располагаться по центру рабочего хода станка. Следует удостовериться, что фактический диапазон измерения оптической линейки полностью охватывает максимальное значение рабочего хода станка.

(2) Приоритетным принципом монтажа является то, что оптическая линейка должна быть расположена в непосредственной близости от ходового винта станка. После монтажа корпус оптической линейки должен перемещаться одновременно с верстаком, а считывающая головка должна быть закреплена к станку.

(3) Установленная оптическая линейка не должна затруднять работу станка или нарушать производительность выполнения операций на станке.

(4) После установки оптическая линейка не должна подвергаться воздействию ударов. Во время выполнения производственных операций оптическая линейка не должна препятствовать перемещению рукояток, тормозов или других выступающих частей; запрещается касаться оптической линейки во время установки и снятия заготовок из зоны обработки. При падении заготовки контакт затрудняется.

(5) Оптическую линейку следует устанавливать в вертикальном положении, как показано на Рис. 20. Но в случае, когда подобная установка невозможна, допускается горизонтальная установка устройства. Запрещается устанавливать оптическую линейку в перевернутом положении (т.е. когда считывающая головка сверху, а корпус оптической линейки – снизу). Запрещается располагать оптическую линейку так, чтобы резиновое уплотнение было направлено непосредственно на сопло подачи масла охлаждения станка.

(6) Для обеспечения целостности сигнала кожух оптической линейки должен быть надежно заземлен.

(7) Величина параллельности и вертикального расположения оптической линейки относительно направляющей станка должна составлять 0,10 мм/м.

4.3 Монтаж оптической линейки и кожуха

(1) Установка оптической линейки с кожухом КА-300С

- а. Выбрать правильное монтажное положение;
- b. Выполнить разметку монтажной поверхности в соответствии с величиной монтажной длины и выполнить монтажные отверстия для винтов M4.
- с. Установить оптическую линейку на установочную поверхность. При помощи измерительного прибора с круговой шкалой выполнить проверку параллельности расположения оптической линейки относительно направляющей станка и отрегулировать до оптимальной величины (см. рис. 21).
- d. Закрепить оптическую линейку на установочной поверхности.
- е. Отрегулировать крепежные винты считывающей головки таким образом, чтобы они слегка касались установочной поверхности.
- f. Выполнить отверстия под винты M4 таким образом, чтобы они соответствовали монтажному отверстию считывающей головки.
- g. Закрепить считывающую головку и снять соединительную планку.
- h. Выполнить отверстия под винты M4 таким образом, чтобы они соответствовали монтажному отверстию на кожухе оптической линейки.
- і. Закрепить оптическую линейку на монтажной поверхности.

(2) Установка оптической линейки с частично закрывающим кожухом КА-200

Процедура монтажа идентична процедуре монтажа оптической линейки с кожухом КА-300C.

(3) Установка оптической линейки с кожухом КА-300В

- а. Выбрать правильное монтажное положение
- b. Выполнить разметку монтажной поверхности в соответствии с монтажным размером армированной опорной пластины кожуха типа В. Выполнить монтажные отверстия для винтов М4.
- с. Прижать опорную пластину к монтажной поверхности. При помощи измерительного прибора с круговой шкалой выполнить проверку параллельности расположения армированной опорной пластины относительно направляющей станка и отрегулировать до оптимальной величины (см. рис. 22).
- d. Закрепить армированную опорную пластину на монтажной поверхности.
- е. Установить оптическую линейку на армированную опорную пластину.
- f. Отрегулировать крепежные винты считывающей головки таким образом, чтобы они слегка касались установочной поверхности.
- g. Выполнить отверстия под винты М4 таким образом, чтобы они соответствовали монтажному отверстию считывающей головки.
- h. Закрепить считывающую головку и снять соединительную планку.
- Закрепить оптическую линейку на армированной опорной пластине. i.

(4) Установка оптической линейки с кожухом D, X, H и оптической линейки с цельным кожухом КА-200

Оптическая линейка с кожухом KA-300D:

Оптическая линейка с кожухом КА-300Х:

Оптическая линейка с кожухом КА-500Н:

Оптическая линейка с цельным кожухом КА-200:

Процедура монтажа идентична процедуре монтажа оптической линейки с кожухом КА-300В.

(5) Установка оптической линейки с кожухом КА-600М

4.4 Монтаж считывающей головки

Допускается прямой и обратный монтаж считывающей головки на обработанной или необработанной поверхности. Обычно применяется прямой монтаж. Обратный монтаж применяется в случае, если монтажное пространство ограничено и если прямой монтаж технически сложно осуществим.

(1) Прямой монтаж считывающей головки

Способ прямого монтажа считывающей головки показан на рисунке 23. Во время монтажа следует следить за тем, чтобы поверхность оптической линейки была параллельна поверхности считывающей головки, а также чтобы их центры в сечении совпадали (допустимое расхождение составляет 0,10 мм).

(2) Обратный монтаж считывающей головки

Способ обратного монтажа считывающей головки показан на рисунке 24. Этапы установки:

- а. Смонтировать Т-образный кронштейн (дополнительный элемент конструкции) на станке.
- b. Снять соединительную пластину, крепящую считывающую головку.
- с. Отрегулировать крепежный винт установочной пластины Т-образного кронштейна таким образом, чтобы он слегка касался считывающей головки.
- d. Закрепить считывающую головку при помощи переднего и заднего винтов М5 на монтажной пластине Т-образного кронштейна.
- е. Отрегулировать положение пластин Т-образного кронштейна таким образом, чтобы положение считывающей головки относительно оптической линейки было таким, как показано на рисунке 24.
- f. Установить оптическую линейку, используя Т-образный кронштейн.

4.5 Переустановка кабеля считывающей головки (возможность доступна в моделях оптической линейки КА-300, КА-500 и КА-600)

При отправке с завода-изготовителя в конструкции прибора доступно два выхода для подключения кабеля считывающей головки на усмотрение слева. пользователя: справа И При кабель необходимости можно переустановить на другой выход следующим образом:

(1) Выкрутить 4 винта M2 с головкой под крестообразный шлиц, которые крепят крышку считывающей головки, и 2 регулировочных винта M3 с правой стороны считывающей головки.

(2) Вставить 2 винта М4 с торцевой шестигранной головкой в отверстия регулировочного винта и закрутить соответствующим образом для фиксирования крышки. В случае образования зазора необходимо использовать отвертку, чтобы выровнять крышку по краю считывающей головки.

(3) Ослабить 2 винта M3 со шлицевой головкой, крепящие кабель в нижней части считывающей головки. Вынуть кабель с контактом и установить во вход с другой стороны.

(4) Перед установкой крышки необходимо убрать остатки старого герметика, а затем нанести новый слой.

(5) Отвинтить винты М4 с торцевой шестигранной головкой. Установить крышку и закрепить с помощью 4 винтов М2 с головкой под крестообразный шлиц.

Примечание: Во избежание соскальзывания инструмента с головки винта на каждом этапе необходимо использовать соответствующий тип инструмента.

Примечание: Кабель считывающей головки оптической линейки типа KA-200 устанавливается изготовителем по умолчанию с правой стороны. Установка кабеля с левой стороны возможна по предварительной договоренности.

5. Правила приемки изделия

5.1 Считывающая головка должна быть закреплена достаточно прочно. При сильном встряхивании прибора значения на цифровом дисплее должны меняться. После прекращения воздействия на цифровом дисплее должно отобразиться исходное значение.

5.2 Считывающая головка должна размещаться по центру оптической линейки, чтобы уплотнительная прокладка закрывалась и открывалась симметрично, как показано на рисунках ниже.

5.3 Расположение считывающей головки относительно оптической линейки и ее монтажные размеры должны соответствовать значениям на рисунке ниже.

5.4 Соединительная пластина обеспечивает правильное расположение считывающей головки по центру оптической линейки и ее расположение относительно корпуса оптической линейки.

ТОКАРНО-ВИНТОРЕЗНЫЙ СТАНОК METAL MASTER X3270, X32100

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Содержание

ПРИМЕЧАНИЕ	2
ПАСПОРТНЫЕ ЛАННЫЕ	2
ПРОТОКОЛ ИСПЫТАНИЙ/ CHECK LIST	4
1. ОБЩЕЕ ОПИСАНИЕ СТАНКА	7
1.1 ОБЩИЕ ДАННЫЕ	7
1.2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ	9
2. ОПИСАНИЕ ОСНОВНЫХ УЗЛОВ РЕДУКТОР	11 11
ЗУБЧАТЫЙ СЕКТОР	11
КОРОБКА ПОДАЧИ	11
ГРУППА КАРЕТОК И ЕЕ МЕХАНИЗМЫ	11
РЕЗЬБОУКАЗАТЕЛЬ	12
ЗАДНЯЯ БАБКА	12
ЛЮНЕТЫ	12
3. МОНТАЖ СТАНКА	13
ТРАНСПОРТИРОВКА	13
РАСПАКОВКА	13
ПОГРУЗОЧНО-РАЗГРУЗОЧНЫЕ РАБОТЫ	13
ПОДГОТОВКА	13
МОНТАЖ, ФУНДАМЕНТ И ВЫРАВНИВАНИЕ	13
ПОДКЛЮЧЕНИЕ К ИСТОЧНИКУ ЭЛЕКТРОПИТАНИЯ	14
ПУСК В ЭКСПЛУАТАЦИЮ	14
1.4. СЕРВИСНОЕ ОБСЛУЖИВАНИЕ СТАНКА СМАЗКА	16 16
РЕКОМЕНДОВАННЫЕ СМАЗОЧНЫЕ ВЕЩЕСТВА	17
ПУСК В ЭКСПЛУАТАЦИЮ	18
НАРЕЗАНИЕ РЕЗЬБЫ И РАБОЧАЯ ПОДАЧА	18
ДЕТАЛИ	21
2.6. РЕГУЛИРОВКА МЕХАНИЗМА	22
7. БЕЗОПАСНОСТЬ	22
о. УЛОД ЗА СТАНКОМ И ЕГО ТЕЛНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ТРАНСМИССИОННАЯ СИСТЕМА И ЛЕТАЛИ (См. Рис. 11)	23
ПОДШИПНИКИ (См. Рис. 12)	27

ПРИМЕЧАНИЕ

Настоящее руководство было составлено для владельца и операторов данного станка. Его цель (помимо предоставления сведений об эксплуатации станка) - обеспечить безопасность посредством применения надлежащих процедур по эксплуатации и техническому обслуживанию. Полностью ознакомьтесь с правилами техники безопасности и инструкциями по проведению технического обслуживания перед эксплуатацией и сервисным обслуживанием станка. Прочтите данное руководство с целью обеспечения максимального срока службы и максимальной эффективности станка, а также получения сведений по безопасной эксплуатации станка.

Поскольку наша компания непрерывно стремится к внедрению новейших разработок в конструкцию станка, возможно возникновение ситуации при которой, ввиду требований печати и поставки, некоторые данные могут не соответствовать станку, по которому возникли спорные моменты.

ОГРАНИЧЕННАЯ ГАРАНТИЯ

Мы прилагаем все усилия для обеспечения наилучшего качества нашей продукции и ее соответствия стандартам прочности и гарантируем розничным потребителям покупателям нашей продукции, что каждое наше изделие не имеет дефектов материалов и производства в течение следующего срока: ОГРАНИЧЕННАЯ ГАРАНТИЯ В ТЕЧЕНИЕ 1 ГОДА НА ВСЕ ИЗДЕЛИЯ, ЕСЛИ НЕ УКАЗАНО ИНОЕ. Настоящая гарантия не распространяется на дефекты, возникшие вследствие прямого или косвенного ненадлежащего использования, подвергания чрезмерным нагрузкам, небрежности или несчастных случаев, естественного износа оборудования или модифицирования не конструкции, **уполномоченного** нашим заводом, также вследствие a ненадлежащего технического обслуживания.

Ни при каких условиях наша компания не несет ответственности за летальный исход, травмирование персонала либо непреднамеренные, непредвиденные, фактические или косвенные убытки, понесенные вследствие использования наших изделий.

В случае выявления гарантийного дефекта наша компания заменит изделие либо осуществит денежный возврат по цене продажи, в случае нашей неспособности быстрого выполнения ремонта или замены, в случае Вашего согласия на возврат денежных средств. Возврат отремонтированного или замененного изделия осуществляется за счет нашей компании, однако, в случае определения отсутствия дефекта либо выявления причины дефекта, не покрываемой гарантией, пользователь должен оплатить расходы по хранению и возврату изделия.

ПАСПОРТНЫЕ ДАННЫЕ

Модель:	Серийный	й номер:	
Основной электродвигатель:	В	Φ	Гц

ПРОВЕРКА ГЕОМЕТРИЧЕСКОЙ ТОЧНОСТИ

Плоскость направляющей токарного станка проверяется в продольном и поперечном направлениях по отношению к оси станка с помощью уровня с точностью до ±0,02/1000 мм и ± 0,04/1000 мм перед проведением любого измерения точности.

Во избежание односторонней нагрузки корпуса поместите каретку по центру корпуса при его выравнивании.

ПРОТОКОЛ ИСПЫТАНИЙ/ CHECK LIST

N⁰	Схема метода измерений	Объект проверки	Inspection item	Допуск	Данные
G1	a.	 а. Выравнивание продольных направляющих скольжения станка в вертикальном положении 	a. Alignment of longitudinal bed slide ways in vertical place	Полный ход 0,25 (+)	
		b. Параллельность поперечного направления	Parallelism of transverse direction	0,69444513 9	
		Параллельность задней бабки по отношению к продольному движению каретки:	Parallelism of tailstock to longitudinal motion of carriage.		
02		 а. В вертикальной плоскости 	a. In vertical plane	a. 500:0,03	
		b. В горизонтальной плоскости	b. In horizontal plane	b. 500:0,02 5	
G3		Выступ хвостовика шпинделя	Spindle nose run out	0,015	
		Биение конуса шпинделя	Spindle taper run out		
G		 а. На конце хвостовика шпинделя 	a. At the end of spindle nose	a. 0,01	
U.		 b. На конце пробного прутка на 300 мм 	b. At the end of 300mm test bar	b. 300:0,05	
G5		Параллельность оправки по центральной линии шпинделя по отношению к продольному движению каретки	Parallelism of spindle center line to longitudinal motion of carriage		
		a. В вертикальной плоскости (вверх)	a. In vertical plane (upward)	a. 300:0,05	
		b. В горизонтальной плоскости (вперед)	b. In horizontal plane (forward)	b. 300:0,05	

G6		Торцевое биение шпинделя	Spindle center run out	0,03	
G7		Параллельность центральной линии шпинделя задней бабки по отношению к продольному движению каретки а. В вертикальной плоскости b. В горизонтальной плоскости	Parallelism of center line of tailstock spindle to longitudinal motion of carriage a. In vertical plane b. In horizontal plane	a. 200:0,03b. 200:0,03	
G8		Разница между центральной высотой между передней и задней бабкой станка (движение задней бабки вверх)	Difference in center height between headstock and tailstock (tailstock upward)	0,06	
	b	Шпиндель	Spindle		
~		а. Торцевое биение	a. Axial run out	a. 0,015	
G9		 выступ на базовой плоскости шпинделя 	b. Run out on spindle base plane	b. 0,02 (осевой выступ включен)	
	a	Вертикальность		0,02/150	
G10		поперечных салазок по отношению к центральной линии шпинделя	Verticality of cross slide to spindle center line	a ≥90°	
G11		Параллельность верхних салазок по отношению к центральной линии шпинделя	Parallelism of top slide to spindle center line	0,04	
G12		Действие кулачка шарико-винтовой передачи	Lead screw cam action	0,05	

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

G13	Точность внешней круглой обработки а. Круглость b. Цилиндричность	Accuracy of outside round cutting a. Roundness b. Cylindricity	a. 0,015 b. 300:0,05	
G14	Плоскость лицевой части для чистовой обработки (впадина)	Flatness of the face for finishing cutting (concave)	0,015 (для Ø160 мм)	
G15	Точность нарезания резьбы на рабочей заготовке между центрами зацепов (сталь)	Precisely thread cutting on work piece between tow centers (steel)	7g	

Дата: _____

Контролер:

1. ОБЩЕЕ ОПИСАНИЕ СТАНКА

1.1 ОБЩИЕ ДАННЫЕ

ОСНОВНЫЕ УЗЛЫ (См. Рис. 1а)

- 1. Направляющие станины
- 2. Передняя бабка
- 3. Коробка подачи
- 4. Коробка каретки
- 5. Распределительный шкаф
- 6. Защитный кожух цанги
- 7. Защита от брызг
- 8. Нижняя каретка
- 9. Верхняя каретка
- 10. Охлаждение
- 11. Рабочее освещение
- 12. Задняя бабка

- 13. Шарико-винтовая передача (с кожухом)
- 14. Ходовой винт
- 15. Стержень выключателя
- 16. Держатель инструмента
- 17. Зубчатый сектор
- 18. Масляный поддон
- 19. Неподвижный люнет
- 20. Опорная ножка
- 21. Индикатор резьбы
- 22. Ножной тормоз
- 23. Трехкулачковый патрон

ОРГАНЫ УПРАВЛЕНИЯ (См. Рис. 1b)

- 1. Рычаг для пуска, остановки и изменения направления хода каретки при нарезании резьбы
- 2. Рычаг ля выбора скорости вращения шпинделя
- 3. Ручка для держателя инструмента
- 4. Маховик для перемещения скользящей направляющей держателя инструмента
- 5. Рукоятка для крепежа пиноли
- 6. Рукоятка для крепежа задней бабки
- 7. Маховик для перемещения пиноли
- 8. Рукоятка для пуска или остановки продольного перемещения каретки при нарезании резьбы
- Рычаг для пуска шпинделя в переднем или обратном направлении и его остановки. При перемещении вперед, шпиндель будет вращаться против часовой стрелки, а при перемещении назад – по часовой стрелке. Шпиндель остановится в центральном положении.
- 10. Рычаг пуска и остановки продольного и поперечного хода каретки.
- 11. Маховик для ручного перемещения каретки в продольном направлении
- 12. Маховик для подачи поперечных салазок
- 13. Барабан (рукоятка) для выбора «подача» или «резьба»
- 14. Кнопка аварийной остановки
- 15. Выключатель охлаждающего насоса
- 16. Кнопка проверки нижней части основного электродвигателя
- 17. Сигнальная лампа. Включается при работе основного электродвигателя

Рис. 1b ОРГАНЫ УПРАВЛЕНИЯ

Φο	пмя	1
T U	J 1VI CL	

	X3270	X32100	
Макс. диаметр над станиной	Ø 330 мм	Ø 330 мм	
Макс. диаметр над выемкой в станине	Ø 150 vor	Ø 470 xar	
(при наличии)	Ø 430 MM	Ø 470 MM	
ГАП станка	150 мм	150 мм	
Макс. диаметр над поперечными салазками	Ø 180 мм	Ø 180 мм	
Расстояние между центрами	700 мм	1000 мм	
Диаметр отверстия шпинделя	38 мм	38 мм	
	18 скоростей,	18 скоростей,	
Диапазон скоростей шпинделя	65-1810 об/мин	65-1810 об/мин	
Торец шпинделя	D1-4	D1-4	
Конус отверстия шпинделя	MT 5	MT 5	
Конус шпинделя задней бабки	MT 3	MT 3	
Диаметр сквозного отверстия шпинделя	32 мм	32 мм	
Макс. ход каретки	560 мм	880 мм	
Макс. ход поперечных салазок	130 мм	130 мм	
Макс. ход верхней салазки	75 мм	75 мм	
Ширина между направляющими	181 мм	181 мм	
Макс. ход шпинделя задней бабки	100 мм	100 мм	
Максимальное сечение резца	16х16 мм	16х16 мм	
	0.053-1.291 мм,	0.053-1.291 мм,	
Автоматическая продольная подача	40 видов	40 видов	
	0.011-0.276 мм/об, 40	0.011-0.276 мм/об,	
Автоматическая поперечная подача	ВИДОВ	40 видов	
	0.4-7 мм/об,	0.4-7 мм/об,	
Диапазон нарезаемых метрических резьб	40 видов	40 видов	
Лиапазон нарезаемых люймовых резьб	4-60 ниток/дюйм, 40	4-60 ниток/дюйм,	
Длинизон пирезиемых допловых резво	ВИДОВ	40 видов	
Шаг винта	3 мм	3 мм	
Мощность двигателя	1,1/1,5 кВт	1,5 кВт	
Напряжение питания	220/380 В, 50 Гц	380 В, 50 Гц	
Габаритные размеры	1480x745x1465 мм	1860х745х1465 мм	
Вес нетто	520 кг	550 кг	

Страница -9-

Рис. 2 Положение для подъема станка

2. ОПИСАНИЕ ОСНОВНЫХ УЗЛОВ

<u>РЕДУКТОР</u>

Редуктор устанавливается на корпус станка. Вращательное движение передается на редуктор с помощью клиновидных ремней и ременных шкивов от электродвигателя, установленного на направляющей.

<u>ЗУБЧАТЫЙ СЕКТОР</u>

Зубчатый сектор предназначен для передачи вращения от редуктора к коробке подачи через сменные зубчатые шестерни. Он устанавливается в коробке зубчатого сектора, который закрывается крышкой.

КОРОБКА ПОДАЧИ

Коробка подачи крепится к лицевой стороне корпуса станка, сразу под редуктором. Она включает в себя все механизмы, с помощью которых выполняется регулировка для выбора шагов подачи или нарезания резьбы.

Необходимые регулировки для различных значений шага подачи или нарезания резьбы осуществляется с помощью соответствующих барабанов, расположенных в передней части коробки подачи.

<u>ГРУППА КАРЕТОК И ЕЕ МЕХАНИЗМЫ</u>

Группа кареток предназначена для крепления и перемещения при обработке. Она состоит из пяти основных частей: коробка каретки, планка каретки, нижние салазки, поперечина и верхние салазки.

А. Коробка каретки

Коробка каретки устанавливается на планку каретки. В ней расположены механизмы, которые используются для продольного и поперечного перемещения каретки, а также в качестве механизма для использования гайки шарико-винтовой передачи при нарезании резьбы и механизма для ручного перемещения каретки.

В. Планка каретки

Планка каретки устанавливается на направляющие корпуса. Все остальные детали группы каретки крепятся на планку каретки.

С. Нижние салазки перемещаются на направляющих планки каретки в поперечном направлении. Данное движение может выполняться автоматически или вручную.

D. При необходимости поворота коротких конусов вручную поперечину можно развернуть на 90° по направлению к нижним салазкам в обоих направлениях и закрепить в нужном положении с помощью подходящих болтов и гаек.

Е. Верхние салазки, на которые устанавливается четырехпозиционный держатель инструмента, может перемещаться только вручную по направлению к поперечине.

Таким образом, можно обеспечить продольное, поперечное и совмещенное перемещение режущего инструмента.

<u>РЕЗЬБОУКАЗАТЕЛЬ</u>

Данное устройство устанавливается на коробке каретки (без связи с ведущим винтом) для определения шага резьбы.

<u>ЗАДНЯЯ БАБКА</u>

Задняя бабка крепится на направляющие корпуса. Она предназначена для захвата заготовки во время обработки между центров, для сверления при ручной подаче инструмента.

<u>ЛЮНЕТЫ</u>

По дополнительному запросу клиента станок может быть укомплектован дополнительными неподвижными и подвижными люнетами.

Оба типа оснащены скользящими пинолями. Неподвижный люнет крепится на корпусе направляющих, тогда как подвижный люнет крепится на планку каретки.
3. МОНТАЖ СТАНКА

<u>ТРАНСПОРТИРОВКА</u>

Станок перевозится в специальном деревянном ящике (либо с опорами, упакованными отдельно в картон) и крепится к основанию ящика или направляющей с помощью подходящих болтов. Некоторые принадлежности устанавливаются на станок с надлежащим крепежом, иные поставляются упакованными в отдельную коробку или закрепленными на основании ящика.

Места, где необходимо пропустить веревки или цепи во время перемещения упакованного станка, отмечены на упаковке. Учитывайте наличие более тяжелой стороны при транспортировке станка с помощью вильчатого погрузчика.

<u>РАСПАКОВКА</u>

После распаковки станка внимательно проверьте ее общее состояние, наличие и состояние всех принадлежностей, перечисленных в упаковочном листе.

ПОГРУЗОЧНО-РАЗГРУЗОЧНЫЕ РАБОТЫ

Распакованный станок необходимо перемещать только с помощью подходящего крана. Перед пропусканием веревок в указанных на Рис. 2 местах, извлеките заднюю бабку и каретку и закрепите их в заднем положении для обеспечения необходимого равновесия при подъеме станка. Запрещено ударять станок во время его перемещения, так как это может повлиять на его точность, независимо от наличия или отсутствия видимых дефектов.

Во избежание повреждения краски на некоторых частях станка во время перемещения, поместите защитные прокладки из ткани или иного подходящего материала в нужные места.

<u>ПОДГОТОВКА</u>

Перед монтажом станка на предварительно выбранное место, тщательно очистите его от защитного масла. Соответствующие поверхности станка необходимо промыть керосином или бензином.

Данное защитное масло не следует удалять с помощью твердых предметов или растворителей, которые могут повредить металлическую поверхность или краску станка. Хорошо очищенные поверхности необходимо высушить с помощью сухой ткани и покрыть чистым машинным маслом. Снимите крышку заднего редуктора и очистите все его компоненты и покройте все шестерни густой, нефиксирующей смазкой.

МОНТАЖ, ФУНДАМЕНТ И ВЫРАВНИВАНИЕ

Для обеспечения точной, надежной и бесперебойной работы станка его необходимо монтировать только на подходящем фундаменте и тщательно выровнять. Фундамент готовится из бетона толщиной от 200 до 300 мм в зависимости от прочности грунта.

Распакованный станок необходимо поднять с помощью крана соответствующим способом и, после установки анкерных и выравнивающих болтов, опустить фундамент таким образом, чтобы анкерные болты попали в соответствующие отверстия. Выравнивающие пластины (прокладки) размещаются под выравнивающими болтами. Горизонтальность направляющей проверяется в продольном и поперечном направлениях по отношению к оси станка с помощью уровня точностью ±0,02/1000 мм и ±0,04/1000 мм. После

первичного выравнивания станка, залейте отверстия для анкерных болтов и пространство между опорами станка цементной замазкой с соотношением цемента и песка 1:3.

После надлежащего схватывания цемента (3-4 дня) аккуратно и равномерно затяните гайки анкерных болтов.

Выполните повторную проверку выравнивания станка и при необходимости выровняйте станок с помощью выравнивающих болтов.

ПОДКЛЮЧЕНИЕ К ИСТОЧНИКУ ЭЛЕКТРОПИТАНИЯ

Убедитесь, что данные на схеме электрической панели (напряжение и частота источника электропитания) соответствуют напряжению в сети.

Рычаг управления должен оставаться в среднем положении, также нажмите на выключатель для выключения станка.

Убедитесь, что станок должным образом заземлен.

ПУСК В ЭКСПЛУАТАЦИЮ

Перед пуском станка еще раз тщательно очистите его и смажьте в соответствии с Рис. За, Зb и 3с – Система смазки.

Проверьте натяжение клиновидного ремня, соединяющего двигатель с колесами низкой скорости. Перетянутый ремень может привести к поломке подшипников, тогда как ослабленный ремень может проскальзывать, поэтому его регулировка необходима.

Пуск станка выполняется в следующем порядке:

Вручную проверьте движение всех механизмов. Оно должно быть плавным. Проверьте исправность всех органов управления.

Наполните емкость системы охлаждения указанной охлаждающей жидкостью (дополнительная принадлежность, подлежит отдельному заказу). Включите главный электродвигатель.

После одного часа работы станка проверьте уровень масла в баках и при необходимости долейте нужное количество.

Через две смены работы станка проверьте натяжение клиновидных ремней.

Рис. За Система смазки

Рис. Зb Система смазки

Рис. Зс Система смазки

1.4. СЕРВИСНОЕ ОБСЛУЖИВАНИЕ СТАНКА

СМАЗКА

Бесперебойная работа станка зависит от его сервисного обслуживания. Особо важным является регулярная смазка всех рабочих деталей станка рекомендованными смазочными материалами. Данные смазочные материалы перечислены на Рис. 3a, 3b и 3c – Система смазки.

Передняя бабка (см. Рис. 3a, 3b и 3c) смазывается путем вбрызгивания масла. Масло можно залить после снятия крышки с комбинированного слива масла с масляным фильтром (п. 1), расположенного в кожухе передней бабки. Слив масла производится путем отвинчивания крышки (п. 1—1) маслосливной трубы. При необходимости замены масла необходимо тщательно очистить переднюю бабку с помощью керосина. При заливке нового масла, его уровень должен быть в середине окошка для проверки уровня масла. Дисковые муфты и передние подшипники основного шпинделя смазываются с помощью масляной канавки.

Масло подается в коробку подачи через отверстие (п. 2), расположенного с его левой (коробка подачи типа III) и правой сторон (коробки подачи типа I и II) (вид спереди). Количество масла также должно быть таким, чтобы его уровень был в середине окошка для проверки уровня масла. Слив масла выполняется с помощью пробки (п. 2--2).

Муфту сменных шестеренок для зубчатого сектора необходимо смазывать каждый день с помощью подходящей масленки. Сменные шестерни должны быть смазаны маслом один раз в рабочую смену.

Коробка каретки смазывается через обычное отверстие (п. 3), откуда масло попадает в бак, общий для всей коробки. С помощью соответствующих канавок масло подается дальше на нужные подшипники, тогда как часть масла капает на дно коробки, откуда происходит смазка шестеренок. Масло сливается с помощью масляной пробки (п. 3--3).

Каретка и поверхность направляющих скольжения смазываются с помощью соответствующих масленок (п. 6), вставленных в каретку и поперечные салазки (п. 8). Подшипник электродвигателя необходимо тщательно очищать и наполнять новой смазкой каждые 6 месяцев. Все трущиеся поверхности каретки, подвижные бабки и линейные конусы необходимо смазывать с помощью масленки в соответствии с системой смазки. Точки смазки отмечены на Рис. 3а, 3b и 3с – Система смазки.

РЕКОМЕНДОВАННЫЕ СМАЗОЧНЫЕ ВЕЩЕСТВА

Для нормальных и иных климатических условий

Форма 2

Vaar	Толика амарики	Метод	Смазочное	Периодичность
y 30,1	ТОЧКа Смазки	смазывания	вещество	смазки
Передняя бабка	Шестерни и подшипники. Передний подшипник шпинделя. Задний подшипник шпинделя. Подшипник ременного шкива	Внутрь	Машинное масло	Замена масла: в первый раз – через 30 дней работы станка; далее – раз в 360 дней
Коробка подачи	Шестерни, подшипники и все механизмы	Внутрь	Машинное масло	Замена масла: в первый раз – через 30 дней работы станка; далее – раз в 360 дней
Каретка	Шестерни, подшипники и все механизмы	Внутрь	Машинное масло	Замена масла: в первый раз – через 30 дней работы станка; далее – раз в 360 дней
Зубчатый сектор	Сменные шестерни. Неподвижный вал зубчатого сектора	Вручную	Машинное масло Смазка «L»	Раз в смену Раз в смену
Направляющая каретка	Направляющие станины корпуса. Направляющие скольжения	Вручную с помощью масленок	Машинное масло	Раз в смену
Поперечная каретка	Суппорт винта в направляющей скольжения. Поперечный шнек каретки	Вручную, заполнить масляный бак, расположенный в каретке	Машинное масло	Раз в смену
Крестовидная каретка	Направляющие станины каретки. Направляющие станины крестовидной каретки. Винт крестовидной каретки. Держатель инструмента	Вручную	Машинное масло	Раз в смену
Задняя бабка	Гильза винта суппорта	Вручную	Машинное масло	Раз в смену
Пульт		Вручную	Машинное масло	Раз в смену

5. ЭКСПЛУАТАЦИЯ СТАНКА

ПУСК В ЭКСПЛУАТАЦИЮ

После выполнения предыдущих инструкций станок готов к работе. Подключение к источнику электропитания выполняется с помощью главного переключателя. Включенная контрольная лампа показывает, что станок подключен к сети электропитания.

Все скорости в диапазоне 75 – 1400 об/мин (65 – 1810 об/мин) при различных положениях рычагов указаны на паспортной табличке.

При пуске станка убедитесь, что все шестеренки зацеплены должным образом.

Это можно обеспечить, переключив рукоятки в их фиксированное положение.

СМЕНА ШЕСТЕРЕНОК ВЫПОЛНЯЕТСЯ ТОЛЬКО ПРИ ПРОСТОЕ.

Выбор режима работы станка осуществляется с помощью паспортной таблички скоростей.

При пробном пуске станка выберите низкую скорость с помощью рычага выбора скорости и дайте станку поработать не менее 20 минут, затем постепенно увеличьте скорость до наивысшей, позволив станку поработать по 5 минут на каждой скорости.

НАРЕЗАНИЕ РЕЗЬБЫ И РАБОЧАЯ ПОДАЧА

Коробка подачи приходит в движение от вала V редуктора посредством набора сменных шестеренок. Если рукоятка 3 (Рис. 4.5.6) помещена в ее правое положение, станок установлен для нарезания правосторонней резьбы. Если эта рукоятка помещена в ее левое положение, станок установлен для нарезания левосторонней резьбы.

Для подготовки станка к нужной подаче нет необходимости устанавливать в зубчатый сектор набор других сменных шестеренок.

Различные значения подачи и нарезания резьбы можно получить путем различных настроек зубчатого сектора и изменения положения барабанов / рукояток 4, 5, 6, 21 и рукоятки 3.

Все настройки зубчатых секторов и различные положения барабанов / рукояток отображены на паспортной табличке для нарезания резьбы и рабочих подач.

КОРОБКА ПОДАЧИ ТИПА І И ІІІ:

Выберите рукоятку 4 для подачи или нарезания резьбы. Рукоятки / барабаны 5, 6, 21 предназначены для управления скоростью коробки подачи.

КОРОБКА ПОДАЧИ ТИПА II:

Утопите рукоятку 4, затем переместите ее влево или вправо для выбора рабочей подачи или нарезания резьбы. Оттяните рукоятку и переместите ее влево или вправо для управления скоростью подачи и размером резьбы. То же можно сделать и с рукояткой 5 для управления скорости подачи и размера резьбы.

Рис. 4 Рычаги управления коробки питания типа I

Рис. 5 Рычаги управления коробки питания типа II

Рис. 6 Рычаги управления коробки питания типа III

Отрегулируйте зазор гайки на каретке (см. Рис. 7). Вращайте п. 1 на гайке для перемещения седла и необходимого хода.

Способ крепежа патрона и защитной пластины указан на Рис. 8. Соединение шпинделя и патрона или защитной пластины осуществляется с помощью замка с D-образными кулачками. При монтаже поместите три вытяжных стержня патрона или защитной пластины в три отверстия на лицевой части шпинделя, затем поверните три зубца с помощью гаечного ключа с квадратной головкой. При повороте зубцов по часовой стрелке патрон или защитная пластина будет зафиксирована, при повороте зубцов против часовой стрелки до определенной точки, патрон или защитную пластину можно будет отсоединить.

Рис. 7 Регулировка зазора горизонтальной Рис. 8 Структура замка патрона или гайки подачи

<u>ДЕТАЛИ</u>

Форма 3

N⁰	Название	Материал	Монтаж	Примечание
1	Гайка подачи	ZQSn6-6-3	1	CQ6230-5104
2	Контргайка	ZQSn6-6-3	1	CQ6230-4003

Рис. 10 Материал контргайки

2.6. РЕГУЛИРОВКА МЕХАНИЗМА

Все механизмы регулируются и проверяются на заводе-изготовителе. После продолжительного срока эксплуатации некоторые механизмы необходимо отрегулировать ввиду износа трущихся поверхностей. Регулировку и настройку различных механизмов также необходимо осуществлять после каждого выполненного ремонта. Рекомендуется, чтобы данные регулировки выполняли квалифицированные специалисты в соответствующих сервисных службах.

7. БЕЗОПАСНОСТЬ

Все операторы станка должны постоянно осознавать угрозы безопасности, связанные с эксплуатацией станка и должны знать все меры предосторожности, которые необходимо принять во избежание случайных случаев и травм.

Далее перечислены некоторые важные правила техники безопасности при использовании станка:

- 1. Правильная одежда играет важную роль, необходимо снять кольца и часы, закатать рукава выше локтей.
- 2. Всегда останавливайте станок при выполнении регулировок.
- 3. Не изменяйте скорость шпинделя до полной остановки станка.
- 4. Проявляйте осторожность при работе с острыми режущими предметами, центрами и сверлами.
- 5. Убирайте патронные ключи и гаечные ключи перед эксплуатацией станка.
- 6. Всегда используйте защиту для глаз.
- 7. Проявляйте осторожность при обращении с тяжелым патроном. Защитите направляющие станка с помощью деревянного бруска при монтаже патрона.
- 8. Перед эксплуатацией станка необходимо знать, где находится кнопка аварийного выключения.
- 9. Используйте плоскогубцы или щетку для удаления стружек, ни в коем случае не делайте этого руками.
- 10. Запрещается нагибаться над станком и облокачиваться на него.
- 11. Запрещается класть инструменты прямо на направляющие. При отсутствии отдельного стола, уложите на направляющие широкую доску с зажимом с каждой стороны.
- 12. Инструменты должны провисать как можно меньше времени.
- 13. Запрещается измерять работу при работе станка.
- 14. Обработку рабочих заготовок допускается производить только напильником с рукояткой.
- 15. Выполняйте обработку напильником с помощью левой руки, если возможно.
- 16. Обеспечьте защиту направляющих при шлифовке или обработке напильником.
- 17. Используйте две руки при шлифовке заготовки. Не оборачивайте наждачную бумагу или шкурку вокруг заготовки.

8. УХОД ЗА СТАНКОМ И ЕГО ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Токарные станки являются высокоточным оборудованием, предназначенным для круглосуточной работы при должной эксплуатации и техническом обслуживании. Токарные станки необходимо смазывать, а также проверять их регулировку перед эксплуатацией. Ненадлежащее смазывание либо незатянутые гайки и болты могут привести к повышенному износу и опасным условиям эксплуатации.

- 1. Направляющие станка являются точными отшлифованными поверхностями и не должны использоваться в качестве стола для иных инструментов. Направляющие должны содержаться в чистоте и не содержать песка и грязи.
- 2. Шарико-винтовую передачу и шестерни необходимо часто проверять на предмет отсутствия металлической стружки, которая может попасть в шестереночный механизм.
- 3. Перед эксплуатацией проверьте станок на предмет отсутствующих деталей или срезных шпилек. См. руководство по эксплуатации перед подъемом станка.
- 4. Смонтированный станок необходимо аккуратно выровнять перед эксплуатацией, во избежание вибраций и шатания.
- 5. При транспортировке станка из обычного цеха его необходимо защитить от пыли, перегрева и переохлаждения.
- 6. При работе в пыльных условиях необходимо часто менять смазку.
- 7. Эксплуатируя станок при высоких температурах, проявляйте осторожность во избежание перегрева мотора или повреждения уплотнителей.
- 8. Эксплуатируя станок при низких температурах, работайте на низких скоростях.
- 9. Слегка смазывайте все салазки перед работой. Сменные шестерни и шарико-винтовые передачи также необходимо слегка смазывать смазкой на литиевой основе.
- 10. Во время эксплуатации металлические осколки, попадающие на скользящие поверхности, необходимо регулярно удалять. Также необходимо выполнять тщательный осмотр, чтобы предотвратить попадание металлической стружки между седлом инструмента станка и направляющими станины станка.
- 11. После ежедневной эксплуатации уберите всю стружку, очистите разные части инструментов станка и нанесите машинное масло, чтобы не допустить коррозию.
- 12. Для поддержания точности обработки необходимо обслуживать центр токарного станка, поверхность инструмента станка, патрона, направляющих и не допускать механических повреждений и износа ввиду повреждения направляющих.
- 13. При обнаружении повреждений необходимо незамедлительно выполнить техническое обслуживание.

ВНИМАНИЕ: перед выполнением любых проверок, операций по ремонту или техническому обслуживанию, необходимо выключить главный выключатель и убедиться, что станок не находится под напряжением.

Масло, смазка и чистящие вещества являются загрязняющими веществами, поэтому запрещается утилизировать их через канализацию или с бытовыми отходами. Утилизация вешеств должна осуществляться В соответствии действующими ланных с законодательными актами по защите окружающей среды. Ветошь для протирки, загрязненная маслом, смазкой или чистящими веществами является легко воспламеняемой. Соберите всю ветошь для чистки или вату для чистки в отдельный подходящий контейнер и утилизируйте их способом, безопасным для окружающей среды. Запрещается их утилизация с бытовыми отходами!

ТРАНСМИССИОННАЯ СИСТЕМА И ДЕТАЛИ (См. Рис. 11)

							Форма 4	
Детали	№ детали	Вид	Кол-во зубцов резьбы	Индекс шага	Угол давления	Материал	Примечание	
	1	Шестерня	42	M2	20°	45	2013	
	2	Шестерня	23	M2	20°	45	2018	
	3	Шестерня	47	M2	20°	45	2019	
	4	Шестерня	36	M2	20°	45	2021	
	5	Шестерня	55	M2	20°	45	2020	
	6	Шестерня	31	M2	20°	45	2022	
	7	Шестерня	45	M2	20°	45	2016	
п	8	Шестерня	58	M2	20°	45	2015	
Передняя	9	Шестерня	21	M2	20°	45	2017	
оаока	10	Шестерня	45	M2	20°	45	2008	
	11	Шестерня	59	M2	20°	45	2029	
	12	Шестерня	46	M2	20°	45	2030	
	13	Шестерня	83	M2	20°	45	2031	
	14	Парная	45	M2	20°	45	2026	
	14	шестерня	40	M2	20°	45	2026	
	15	111	40	M2	20°	45	2022	
	15	шестерня	45	M2	20°	45	2032	
	16	Шестерня	24	M2.25	20°	45	3029B	
	17	Шестерня	16	M2.25	20°	45	3031B	
	18	Шестерня	18	M2.25	20°	45	3032B	
		T	18	M2.25	20°	45		
	19	Троиная	18	M2.25	20°	45	3005B	
		шестерня	18	M2.25	20°	45		
	20	Шестерня	20	M2.25	20°	45	3003B	
	21	Шестерня	28	M2.25	20°	45	3002B	
Kanafina	22	Шестерня	27	M2.25	20°	45	3027C	
короока	23	Шестерня	21	M2.25	20°	45	3025C	
подачи	24	Шестерня	21	M2.25	20°	45	3018C	
	25	Парная	18	M2.25	20°	45	20260	
	23	шестерня	30	M2.25	20°	45	3020C	
	26	Шестерня	22	M2.25	20°	45	3007C	
	77	Парная	15	M2.25	20°	45	20060	
	21	шестерня	22	M2.25	20°	45	3006C	
	28	Шестерня	23	M2.25	20°	45	3009B	
	29	Шестерня	17	M2.25	20°	45	3016C	
	30	Шестерня	15	M2.25	20°	45	3014C	

			-				Продолжение
	31	Шестерня	11	M2.25	20°	45	4028
	32	Зубчатая рейка		M2.25	20°	45	
	33	Шарико- винтовая передача	Одинарная нарезка	8TPL или 3 мм	29° или 30°	45	
	34	Контргайка	Одинарная нарезка			ZQSn6- 6-3	
	35	Червяк	Одинарная нарезка	MS2	20°	45	
	36	Червячная передача	24	MS2	20°	ZQSn6- 6-3	4017
	37	Шестерня	15	M2	20°	45	4030
Фартук	38	Шестерня	50	M2	20°	ZQSn6- 6-3	4029
	39	Шестерня	25	M2	20°	45	4014
	40	Гайна	Одинарная	10TPL, 2		ZQSn6-	Левосторонняя
	40	т айка	нарезка	MM		6-3	резьба
	41	Винт	Одинарная нарезка	10TPL, 2 мм		45	
	42	Шестерня	14	M2	20°	45	4019
	43	Шестерня	51	M2	20°	45	4013
	44	Шестерня	43	M2	20°	45	5127
	45	Шестерня	25	M2	20°	45	4010
	46	Шестерня	48	M2	20°	45	4012
	47	Винт	Одинарная нарезка	10TPL, 2 мм		45	
	48	Гайка	Одинарная нарезка	10TPL, 2 мм		ZQSn6- 6-3	
Задняя	49	Стержневой винт	Одинарная нарезка	10TPL, 2 мм		45	Левосторонняя резьба
бабка	50	Гайка	Одинарная нарезка	10TPL, 2 мм		ZQSn6- 6-3	Левосторонняя резьба
		Шестерня	22	M1.25	20°		3076C
		Шестерня	24	M1.25	20°	45	2002C
		Шестерня	26	M1.25	20°	45	3075C
Сменная		Шестерня	44	M1.25	20°	45	3077C
шестерня		Шестерня	48	M1.25	20°	45	3039C
		Шестерня	52	M1.25	20°	45	3039C
		Парная шестерня	127(120)	M1.25	20°	45	3078C

Рис. 11 Кинематическая схема

Рис. 12 Распределение подшипников

				Форма 5		
ТИП	Наименование	Спецификация	Кол-во	Место установки		
60104	Однорядный шарикоподшипник	20 x 42 x12	1			
60105	Однорядный шарикоподшипник с экраном	25 x 47 x12	1			
304	Однорядный шарикоподшипник с экраном	20 x 52 x 15	1	Породияя бобио		
104	Однорядный шарикоподшипник	20 x 42 x 12	2	передняя бабка		
105	Однорядный шарикоподшипник	25 x 17 x 12	2			
204	Однорядный шарикоподшипник	20 x 47 x 14	1			
D7211	Конический роликоподшипник	55 x 100 x 22	1			
D7212	Конический роликоподшипник	60 x 110 x 22	1			
102	Однорядный шарикоподшипник	15 x 32 x 9	3			
103	Однорядный шарикоподшипник	17 x 35 x 10	8			
7000103	Однорядный шарикоподшипник	17 x 35 x 8	1			
8103	Однорядный опорный подшипник	17 x 32 x8	1	Коробка подачи		
8104	Однорядный опорный подшипник	20 x 35 x 10	1			
8101	Однорядный опорный подшипник	12 x 26 x 9	2	Каретка		
8102	Однорядный опорный подшипник	15 x 28 x 9	2	Карстка		
8101	Однорядный опорный подшипник	12 x 26 x 8	1	Задняя бабка		
60103	Однорядный шарикоподшипник	17 x 35 x 10	2	Сменная шестерня		

ПОДШИПНИКИ (См. Рис. 12)

СХЕМА ДЕТАЛЕЙ И ПЕРЕЧЕНЬ ДЕТАЛЕЙ

ПОДЛЕЖИТ ИЗМЕНЕНИЮ БЕЗ ПРЕДВАРИТЕЛЬНОГО УВЕДОМЛЕНИЯ

СОДЕРЖАНИЕ

1	УЗЕЛ СТАНИНЫ	20
1.		<i>ر 4</i>
2.	передняя бабка	
3.	РЕДУКТОР	
4.	РЕДУКТОР-І	
5.	РЕДУКТОР - Ш	
6.	РЕДУКТОР – III	42
7.	ЛЕВЫЙ ФАРТУК	45
8.	СЛОЖНЫЙ СУППОРТ	49
9.	СЕДЛО	51
10.	ЗАДНЯЯ БАБКА	53
11.	СМЕННЫЕ ШЕСТЕРНИ	54
12.	УЗЕЛ ПЕРЕКЛЮЧАТЕЛЯ УПРАВЛЕНИЯ	55
13.	УЗЕЛ СТАНИНЫ И ПРИВОДА	56
14.	СПЕЦИАЛЬНЫЕ ПРИНАДЛЕЖНОСТИ	57
15.	НЕПОДВИЖНЫЙ ЛЮНЕТ	60
16.	ПОДВИЖНОЙ ЛЮНЕТ	61
17.	УСТРОЙСТВО ПОЗИЦИОНИРОВАНИЯ	61
18.	ЗАЩИТНАЯ КРЫШКА	63
19.	ЗАШИТНОЕ ОГРАЖЛЕНИЕ	64
	1 – 71 – – – – – – – – – – – – – – – – –	

УЗЕЛ СТАНИНЫ

Y 3	ЕЛ СТАНИНЫ						
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ
1	Станина станка	1	10047	1	Винт	6	M6 x 15
2	Винт	6	M12 x 40	2	Штифт	6	5 x 20
3	Зубчатая рейка	1	1009	3	Зубчатая рейка	2	1011

ПЕРЕДНЯЯ БАБКА

ПЕ	РЕДНЯЯ БАБКА						
<u>ک</u>	НАИМЕНОВАН	КОЛ	ПРИМЕЧАНИ	۸с.	НАИМЕНОВАН	КОЛ	ПРИМЕЧАНИ
JN⊇	ИЕ	-BO	E	<u>JNo</u>	ИЕ	-BO	Е
1	Шпиплети	1	2034	34	Стопорное	1	
1	шпиндель	1	2034	54	кольцо	1	
2	Штифт	3	2035	35	Шестерня	1	2022
3	Пружина	3	0,6x4x22	36	Шестерня	1	2020
4	Винт	3	M8x16	37	Шестерня	1	2021
5	Крышка	1	2038	38	Стопорное кольцо	1	
6	Масляный сальник	1	2006	39	Подшипник	1	6104
7	Подшипник	1	D7212	40	Крышка	1	2009
8	Шестерня	1	2031	41	Масляный сальник	1	2009A
9	Шестерня	1	2030	42	Ключ	1	8x108
10	Шестерня	1	2029	43	Винт	2	M3x8
11	Гайка	1	2024	44	Масляный сальник	1	
12	Шестерня	1	2008	45	Передняя панель	1	2055
13	Подшипник	1	D7212	46	Винт	6	M3x8
14	Гайка	2	2007	47	Винт	2	M6x12
15	Крышка	1	2005A	48	Шайба	2	2003
16	Масляный сальник	1	2023	49	Шестерня	2	2026
17	Винт	4	M8x16	50	Стопорное кольцо	1	25
18	Винт	2	M8x8	51	Подшипник	1	
19	Муфта	2	2025	52	Вал	1	2027a
20	Винт	4	M8x16	53	Стопорное кольцо	1	42
21	Винт	2	M3x8	54	Подшипник	1	
22	Ключ	1	8x45	55	Стопорное кольцо	1	20
23	Ключ	1	8x80	56	Масляный сальник	1	D20x40x10
24	Вал	3	2037	57	Крышка	1	2004A
25	Винт	5	M8x16	58	Масляный сальник	2	2066
26	Крышка	1	2040	59	Шестерня	1	2002B
27	Масляный сальник	1	2028	60	Винт	3	M6x115
28	Подшипник	1		61	Ключ	1	C5x8
29	Вал	1	2039	62	Ключ	1	C5x20
30	Шестерня	1	2017	63	Крышка	1	2063
31	Ключ	2	5x18	64	Стопорное кольцо	1	
32	Шестерня	1	2015	65	Подшипник	1	
33	Шестерня	1	2016	66	Вал	1	2010B

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

N⁰	НАИМЕНОВАН	КОЛ	ПРИМЕЧАНИ	N⁰	НАИМЕНОВАН	КОЛ	ПРИМЕЧАНИ
	ИЕ	-BO	Е		ИЕ	-BO	Е
67	Ключ	1	5x80	95	Передняя бабка	1	2033
68	Ключ	1	C5x24	96	Штифт	2	4x24
69	Шестерня	1	2019	97	Масляный сальник	7	16x2.4
70	Шестерня	1	2018	98	Вал	2	2046
71	Шестерня	1	2013	99	Рычаг переключения	2	2042
72	Стопорное кольцо	1	47	100	Штифт	3	4x24
73	Подшипник	2		101	Стопорное кольцо	3	
74	Стопорное кольцо	1		102	Переключатель	2	2041
75	Крышка	1	2012B	103	Ключ	2	5x16
76	Масляный сальник	1	D25x40x10	104	Рукоятка	3	2058
77	Винт	4	M6x20	105	Выступ	2	2059
78	Шкив	1	2014	106	Шаровая	4	
79	Шайба	1	2011	107	Пружина	4	1x6x20
80	Винт	1	M8x20	108	Шестерня	2	2047
81	Масляный сальник	1		109	Винт	4	M8x8
82	Винт	1	M6x8	110	Винт	2	M12x25
83	Вал	1	2001	111	Винт	4	M3x6
84	Стопорное кольцо	2	47	112	Передняя панель	2	2060
85	Шестерня	1	2032	113	Винт	2	M6x20
86	Подшипник	1		114	Шестерня	2	2061
87	Стопорное кольцо	1		115	Винт	1	M6x8
88	Винт	6	M6x30	116	Рычаг переключения	1	2054A
89	Винт	2	M6x20	117	Манжет	1	2079
90	Винт	1	M16x1.5	118	Переключатель	1	2048
91	Масляный сальник	1	16x2.4	119	Вал	1	2052
92	Винт	1	M16x1.5	120	Штифт	1	5x40
93	Крышка	1	2040	121	Выступ	1	2051
94	Масляный сальник	1	2062				

РЕДУКТОР

PE	ЈУКТОР						
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ
1	Масляный стакан	1		21	Выступ	1	2057
2	Стопорное кольцо	1		22	Штифт	1	5x40
3	Шестерня	3	3015	23	Редуктор	1	3001
4	Втулка	3	3016	24	Винт	3	M8x8
5	Шайба	1	3024	25	Пружина	2	1 x4,5x7
6	Шестерня	1	3023	26	Кольцо стопорное	2	
7	Вал	1	3022	27	Винт	2	M10x30
8	Ключ	1	5x10	28	Стопорная шайба	2	
9	Крышка	1	3031	29	Ходовой винт	1	1006
10	Винт	3	M6x16	30	Вал	1	3047
11	Ходовой винт	1	1005	31	Шестерня	1	3004
12	Кожух	2	3084	32	Пластина	1	3029
13	Подшипник	4	8103	33	Винт	4	M6x16
14	Штифт	2	5x35	34	Вал	1	3039
15	Вал	1	3028	35	Стопорное кольцо	1	
16	Ключ	2	5x14	36	Рычаг переключения	1	3040
17	Шестерня	1	3026	37	Штифт	1	5x30
18	Гайка	4	M12	38	Переключатель	1	3041
19	Шайба	4	3025	39	Втулка	1	3019
20	Рычаг	1	6056	40	Винт	1	M6x12

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

N⁰	НАИМЕНОВАНИЕ	КОЛ-	ПРИМЕЧАНИЕ	N₂	НАИМЕНОВАНИЕ	КОЛ-	ПРИМЕЧАНИЕ
		BO				BO	
41	Шайба	1	3021	61	Штифт	1	
42	Шестерня	2	3018	62	Шестерня	1	3027
43	Шайба	2	3017	63	Вал	1	3020
44	Шестерня	1	3012	64	Ключ	1	5x75
45	Шестерня	1	3011	65	Ключ	1	3042
46	Шестерня	1	3010	66	Верхняя часть	1	3043
47	Шестерня	1	3009	67	Ключ	2	3014
48	Шестерня	1	3008	68	Вал	1	3003
49	Шестерня	1	3007	69	Штифт	2	5x18
50	Шестерня	1	3006	70	Верхняя часть	2	3002
51	Шестерня	1	3005	71	Винт	2	M6x5
52	Шестерня	2	3044	72	Вал	2	3051
53	Штифт	4	6x25	73	Вал	2	3054
54	Шестерня	2	3045	74	Пружина	2	1x8x47
55	Втулка	1	3046	75	Муфта	2	2053
56	Подшипник	2		76	Корпус	2	3055
57	Шестерня	1	3013	77	Гайка	2	M6
58	Шестерня	2	3049				
59	Втулка	2	3050				
60	Рычаг переключателя	2	3052				

РЕДУКТОР-І

PE	ҬУКТОР-І						
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ
1	Масляный стакан	1		29	Шестерня	1	3026C
2	Винт	7	M6x12	30	Шестерня	1	3007C
3	Крышка	1	3034B	31	Шайба	1	3008C
4	Масляный сальник	1	3035C	32	Стопорное кольцо	2	
5	Подшипник	8		33	Подшипник	1	
6	Ключ	1	5x13	34	Шестерня	1	3009B
7	Вал	1	3041B	35	Ключ	1	C5x40
8	Ключ	3	6x90	36	Вал	1	3019C
9	Шестерня	2	3005B	37	Вал	1	3004B
10	Шайба	2	3066B	38	Ключ	1	5x35
11	Винт	1	M6x8	39	Стопорное кольцо	1	
12	Шестерня	1	3027C	40	Шестерня	1	3006C
13	Ключ	1	6x15	41	Штифт	2	5x25
14	Ключ	1	6x35	42	Шестерня	1	3018C
15	Вал	1	3067C	43	Подшипник	1	8103
16	Шестерня	1	3025C	44	Крышка	1	3084D
17	Подшипник	3		45	Масляный сальник	1	3068D
18	Крышка	3	3017B	46	Подшипник	1	8104
19	Крышка	2	3044B	47	Вал	1	3021C
20	Масляный сальник	2	3046B	48	Гайка	2	M20x1,5
21	Шайба	1	3045B	49	Штифт	1	5x25
22	Вал	1	3033B	50	Втулка	1	3020D
23	Шестерня	1	3029B	51	Передняя панель	1	3060D
24	Шестерня	1	3031B	52	Масляный сальник	1	3071D
25	Шестерня	1	3032B	53	Крышка	1	3059B
26	Шестерня	1	3003B	54	Крышка	1	3042C
27	Шайба	1	3030B	55	Масляный сальник	1	3070C
28	Шестерня	1	3002B	56	Редуктор	1	3001C

N⁰	НАИМЕНОВАНИЕ	КОЛ	ПРИМЕЧАНИ	N⁰	НАИМЕНОВАНИ	КОЛ	ПРИМЕЧАНИ
57	Buur	-BO	E M6x12	85	Е	-BO	E 30/0B
58	Штифт	2	5x25	86	Кришка	1	3047D
50		2	5725	87	Винт	1 8	M8v16
57	Стопорная шаноа	2		07		0	IVIOXIO
60	Винт	2	,10x30	88	масла	1	
61	Винт	1	M6x12	89	Переключатель	1	3062 B
62	Шайба	1	6x32x5	90	Рычаг переключения	1	3063B
63	Втулка	1	3024C	91	Выступ	2	3057C
64	Шестерня	1	3016C	92	Вал	2	3056C
65	Винт	1	M6x16	93	Масляный сальник	2	16x2.4
66	Вал	1	3015C	94	Ручной маховик	2	3054C
67	Масляный сальник	1	22x2.65	95	Ключ	2	5x8
68	Шестерня	1	3014C	96	Шайба	2	
69	Крышка	1	3022 F	97	Винт	2	M6x10
70	Масляный сальник	1	3086D	98	Рычаг	2	3051C
71	Винт	5	M6x25	99	Ключ	2	5x8
72	Вал	1	3013E	100	Штифт	1	
73	Масляный сальник	1	25x40x10	101	Рычаг переключения	1	3058C
74	Винт	2	M16x1,5	102	Винт	4	M3x6
75	Шайба	2		103	Шаровая	4	015
76	Масляный сальник	2	16x2.4	104	Пружина	4	1x5x14
77	Винт	1	M6x10	105	Винт	4	M8x5
78	Деталь для позиционирован ия	1	3012E	106	Штифт	2	M5x25
79	Суппорт	1	7003C	107	Рычаг переключения	2	3065C
80	Винт	2	M4x20	108	Указатель	2	2060
81	Винт	8	M8x16	109	Вал	1	3011D
82	Вращаемая кнопка	2	M8x40	110	Винт	2	M4x40
83	Масляный сальник	2	25x2,65				
84	Рычаг переключения	1	3053B				

РЕДУКТОР - ІІ

PE	РЕДУКТОР-ІІ									
N⁰	НАИМЕНОВАНИЕ	КО Л- ВО	ПРИМЕЧАНИ Е	N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ			
1	Масляный стакан	1		33	Подшипник	1				
2	Винт	7	M6x12	34	Шестерня	1	3009B			
3	Крышка	1	3034B	35	Ключ	1	C5x40			
4	Масляный сальник	1	3035C	36	Вал	1	3019C			
5	Подшипник	8		37	Вал	1	3004B			
6	Ключ	1	5x13	38	Ключ	1	5x35			
7	Вал	1	3041B	39	Стопорное кольцо	1				
8	Ключ	3	6x90	40	Шестерня	1	3006C			
9	Шестерня	2	3005B	41	Штифт	2	5x25			
10	Шайба	2	3066B	42	Шестерня	1	3018C			
11	Винт	1	M6x8	43	Подшипник	1	8103			
12	Шестерня	1	3027C	44	Крышка	1	3084D			
13	Ключ	1	6x15	45	Масляный сальник	1	3068D			
14	Ключ	1	6x35	46	Подшипник	1	8104			
15	Вал	1	3067B	47	Вал	1	3021C			
16	Шестерня	1	3025C	48	Гайка	2	M20x1,5			
17	Подшипник	3		49	Штифт	1	5x25			
18	Крышка	3	3017B	50	Втулка	1	3020E			
19	Крышка	2	3044B	51	Передняя панель	1	3060B			
20	Масляный сальник	2	3046B	52	Масляный сальник	1	3071D			
21	Шайба	1	3045B	53	Крышка	1	3059D			
22	Вал	1	3033B	54	Крышка	1	3042C			
23	Шестерня	1	3029B	55	Масляный сальник	1	3070C			
24	Шестерня	1	3031B	56	Редуктор	1	3001D			
25	Шестерня	1	3032B	57	Винт	6	M6x12			
26	Шестерня	1	3003B	58	Штифт	2	5x25			
27	Шайба	1	3030B	59	Стопорная шайба	2				
28	Шестерня	1	3002B	60	Винт	2	M10x30			
29	Шестерня	1	3026C	61	Винт	1	M6x10			
30	Шестерня	1	3007C	62	Шайба	1	6x32x5			
31	Шайба	1	3008C	63	Втулка	1	3024C			
32	Стопорное кольцо	2		64	Шестерня	1	3016C			

N⁰	НАИМЕНОВАНИ Е	КОЛ -ВО	ПРИМЕЧАНИ Е	№	НАИМЕНОВАНИЕ	КОЛ -ВО	ПРИМЕЧАНИ Е
65	Винт	1	M6x16	97	Прокладка	2	3048D
66	Вал	1	3015C	98	Баллон	2	3052D
67	Масляный сальник	1	22x2,65	99	Масляный сальник	2	8,5x1,8
68	Шестерня	1	3014C	100	Вал	2	3056D
69	Крышка	1	3022F	101	Штифт	2	3079D
70	Масляный сальник	1	3086D	102	Пружина	2	
71	Винт	5	M6x25	103	Шаровая	4	
72	Вал	1	3013D	104	Пружина	4	1x5x14
73	Масляный сальник	1		105	Винт	4	M8x5
74	Винт	2	M16x1,5	106	Штифт	2	M5x25
75	Шайба	1		107	Штифт	2	5x25
76	Масляный сальник	1	16x2,4	108	Ручной рычаг	2	3055D
77	Винт	1	3012C	109	Штифт	4	A6x20
78	Окно уровня масла	1		110	Штифт	2	A5x15
79	Кронштейн	1	3011D	111	Винт	4	M4x6
80	Винт	1		112	Переключатель	3	3062 B
81	Винт	4	M22x24	113	Пружина	2	1x5x14
82	Винт	2	M4x10	114	Рычаг переключения	1	3058D
83	Стопорное кольцо	8		115	Рычаг переключения	1	3053D
84	Рычаг переключения	1	3063D	116	Бирка	1	3064D
85	Переключатель	1	3049B	117	Бирка	1	3069D
86	Крышка	1	3061B	118	Рукоятка	2	2058
87	Рычаг переключения	1	3065D	119	Вращаемая кнопка	2	M8x40
88	Оболочка	2	3050D	120	Стержень переключения	1	3011D
89	Прозрачная шкала	4	3080D	121	Винт	1	M6x10
90	Винт	6	M4x10	122	Блок позиционирован ия	1	3012E
91	Ключ	4	5x6	123	Подшипник	1	8103
92	Масляный сальник	2	21,5x1,8	124	Штифт	1	5x40
93	Поворотная пластина	2	3057D	125	Соединительная деталь	1	3020D
94	Бирка	1	3071D	126	Шаровая	2	06
95	Канальная пластина	2	3054D	127	Пружина	2	1x5x20
96	Бирка	1	3074D	128	Винт	2	M8x8

РЕДУКТОР – III

РЕДУКТОР-ІІІ								
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	
1	Масляный стакан	1		26	Шестерня	1	3003B	
2	Винт	7	M6x12	27	Шайба	1	3030B	
3	Крышка	1	3034B	28	Шестерня	1	3002B	
4	Масляный сальник	1	3035C	29	Шестерня	1	3026C	
5	Подшипник	8	89103	30	Шестерня	1	3007C	
6	Ключ	1	5x13	31	Шайба	1	3008C	
7	Вал	1	3041B	32	Стопорное кольцо	2		
8	Ключ	3	6x90	33	Подшипник	1	89103	
9	Шестерня	2	3005B	34	Шестерня	1	3009B	
10	Шайба	2	3066 B	35	Ключ	1	C5x40	
11	Винт	1	M6x8	36	Вал	1	3019C	
12	Шестерня	1	3027C	37	Вал	1	3004B	
13	Ключ	1	6x15	38	Ключ	1	5x35	
14	Ключ	1	6x35	39	Стопорное кольцо	1		
15	Вал	1	3067B	40	Шестерня	1	3006C	
16	Шестерня	1	3025C	41	Штифт	2	5x6	
17	Подшипник	3	89102	42	Шестерня	1	3018C	
18	Крышка	3	3017B	43	Подшипник	1	8103	
19	Крышка	2	3044 B	44	Крышка	1	3084D	
20	Масляный сальник	2	3046 B	45	Масляный сальник	1	3068D	
21	Шайба	1	3045B	46	Подшипник	1	8104	
22	Вал	1	3033B	47	Вал	1	3021C	
23	Шестерня	1	3029B	48	Гайка	2	M20x1,5	
24	Шестерня	1	3031B	49	Штифт	1	5x6	

N⁰	НАИМЕНОВАНИ Е	КОЛ -ВО	ПРИМЕЧАНИ Е	№	НАИМЕНОВАНИЕ	КОЛ -ВО	ПРИМЕЧАНИ Е
51	Передняя панель	1	3060E	76	Винт	8	M8x15
52	Масляный сальник	1	3071D	77	Винт	1	M6x10
53	Крышка	1	3059D	78	Деталь для позиционировани я	1	3012D
54	Крышка	1	3042C	79	Суппорт	1	7003B
55	Масляный сальник	1	3070C	80	Винт	2	M4x20
56	Редуктор	1	3001C	81	Вал	1	3011D
57	Винт	6	M6x12	82	Зубчатая рейка	1	3050C
58	Штифт	2	5x25	83	Зубчатая рейка	2	3049C
59	Стопорная шайба	2		84	Вал	2	3089A
60	Винт	2	M10x30	85	Масляный сальник	4	12x1,8
61	Винт	1	M6x12	86	Винт	2	M4x6
62	Шайба	1	6x32x5	87	Зубчатая рейка	1	3062C
63	Втулка	1	B1260	88	Винт	12	M3x6
64	Шестерня	1	3016C	89	Указатель	4	2060
65	Винт	1	M6x16	90	Винт	4	M8x6
66	Вал	1	3015C	91	Пружина	4	1x5x25
67	Масляный сальник	1	22x2,65	92	Стальной шар	4	05
68	Шестерня	1	3014C	93	Винт	4	M6x10
69	Крышка	1	3022F	94	Шайба	4	
70	Масляный сальник	1	3086D	95	Ручной маховик	4	3054F
71	Винт	5	M6x25	96	Ключ	4	5x8
72	Вал	1	3013E	97	Шестерня	4	3088
73	Масляный сальник	1	18x30x10	98	Окно уровня масла	1	A12
74	Винт	2	M16x1,5	99	Масляный сальник	4	16x2,4
75	Шайба	2					

ЛЕВЫЙ ФАРТУК

ПРАВЫЙ ФАРТУК

ЛЕ	ЛЕВЫЙ ФАРТУК ИЛИ ПРАВЫЙ ФАРТУК									
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ			
1	Втулка	1	4026	23	Плоская пружина	1	4037			
2	Шестерня	1	4029	24	Вал	1	4015			
3	Штифт	1	5x30	25	Шестерня	1	4012			
4	Проставка	1	4027	26	Штифт	1	5x33			
5	Вал-шестерня	1	4028	27	Шестерня	1	4013			
6	Червячный манипулятор	1	4008	28	Шестерня	1	4014			
7	Червячная передача	1	4009	29	Втулка	1	4016			
8	Шпонка на лыске	1	B5x36	30	Корпус фартука	1	4001			
9	Рукоятка	1	4032	31	Винт	1	M6x6			
10	Рычаг	1	4033	32	Шестерня	1	4010			
11	Ручной маховик	1	4034	33	Вал	1	4011			
12	Кольцевой лимб	1	4036	34	Винт	3	M6x45			
13	Винт	1	M6x20	35	Винт	1	M8x8			
14	Кронштейн	2	4031	36	Пружина	2	1x45x6			
15	Масляный стакан	1		37	Шаровая	2				
16	Вал-шестерня	4	4030	38	Рычаг	1	4041			
17	Винт	1	M6x12	39	Вал-шестерня	1	4042			
18	Шайба	1	4035	40	Штифт	1	5x25			
19	Винт	4	M6x10	41	Втулка	1	4020			
20	Шайба	1	4038	42	Шестерня	1	4019			
21	Выступ	1	4039	43	Штифт	1	5x25			
22	Ключ	1	5x16	44	Вал	1	4018			

N⁰	НАИМЕНОВАНИЕ	КОЛ -ВО	ПРИМЕЧАНИ Е	№	НАИМЕНОВАНИ Е	КОЛ -ВО	ПРИМЕЧАНИ Е
45	Червячная передача Шестерня	1	4017	67	Регулировочны й клин	1	3022
46	Окно уровня масла	1	A12	68	Корпус контргайки	2	M6x25
47	Винт	2	M5x33	69	Винт	2	M5x35
48	Шайба	3	06	70	Контргайка	1	4002
49	Винт	1	M6x10	71	Винт	1	4003A1
50	Винт	1	M6x6	72	Винт	2	M6x15
51	Ограничитель	1	4043	73	Гайка	2	M6
52	Предохранительн ое реле	2	4025	74	Резьбоуказател ь	1	4006
53	Вал	1	4024	75	Корпус	1	4005
54	Винт	1	M8x8	76	Винт	1	M6x65
55	Выступ	1	4045	77	Шестерня	1	4044
56	Штифт	1	5x40	78	Винт	1	M6x15
57	Зубец	1	4021				
58	Винт	1	M5x12				
59	Вал	1	4023				
60	Винт	1	M8x30				
61	Шайба	2	08				
62	Винт	2	M10x1x20				
63	Шайба	1	010				
64	Рычаг	1	4007				
65	Рычаг	1	4044				
66	Штифт	2	5x10				
СЛОЖНЫЙ СУППОРТ

СЛ	СЛОЖНЫЙ СУППОРТ										
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ				
1	Рукоятка	1	5010	23	Ключ	1	4x8				
2	Выступ	1	5009	24	Подшипник	1	8101				
3	Манжет	1	5008	25	Градуировка	1	5026A2				
4	Винт	8	M10x45	26	Заклепка	2	2x4				
5	Верхняя часть суппорта	1	5005	27	Винт	2	M6x25				
6	Вал	1	5006	28	Кронштейн	1	5013				
7	Гайка	1	5003	29	Подшипник	1	8101				
8	Штифт	1	5004	30	Кольцевой лимб	1	5014A3				
9	Пружина	1	1,2x4,8x8	31	Ручной маховик	1	5016A				
10	Масляный стакан	1		32	Шайба	1	5028				
11	Гайка	1	M6	33	Винт	1	M6x12				
12	Винт	1	M6x16	34	Рычаг	2	5031				
13	Узел	1	5001	35	Плоская пружина	1	4037				
14	Винт	2	5107	21A	Гайка	1	5012				
15	Гайка	2	M10	22A	Ходовой винт	1	5011				
16	Узел	1	5002	30A	Кольцевой лимб	1	5014				
17	Штифт	1	5024	31A	Шайба	1	5016				
18	Винт	1	M6x8	32A	Гайка	1	5025				
19	Регулировочный клин	1	5023	33A	Винт	1	M6x8				
20	Винт	2	5021	34A	Рычаг	1	M8x63				
21	Гайка	1	5012A1	36	Кронштейн	1	5120				
22	Винт направляющей	1	5011 A3	37	Штифт	1	3x16				

CE	ДЛО						
N₂	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ
1	Седло	1	5101	28	Прижимная пластина	1	5131
2	Винт	8	M5x132	29	Прижимная пластина	2	5116
3	Крепление	1	5108	30	Ключ	1	5x20
4	Крышка	1	5106	31	Прижимная пластина	1	5129
5	Винт	1	M3x8	32	Штифт	1	3x20
6	Прижимная пластина	2	5130	33	Кольцевой лимб	1	5124 A3
7	Прижимная пластина	2	5110	34	Плоская пружина	1	4037
8	Крепление	2	5109	35	Ручной маховик	1	5122A
9	Винт	1	5113	36	Шайба	1	5028
10	Винт	1	5128	37	Винт	1	M6x16
11	Штифт	2	6x45	38	Рукоятка	1	4033
12	Винт	4	M10x30	39	Рычаг	1	4032
13	Масляный стакан	5		40	Подшипник	1	8102
14	Винт	2	5115	41	Кронштейн	1	5125A
15	Верхняя часть суппорта	1	5102	42	Винт	2	M8x30
16	Винт	1	M6x12	43	Шайба	1	5126
17	Втулка	1	5105	44	Ходовой винт	1	5103 A3
18	Регулировочный клин	1	5114	35A	Манжет	1	5122
19	Винт	2	M4x12	36A	Гайка	1	5121
20	Гайка	1	5104A2	37A	Винт	1	M6x6
21	Шестерня	1	5127	41A	Кронштейн	1	5125A
22	Винт	1	M6x8	44A	Ходовой винт	1	5103A2
23	Винт	7	M8x25	45	Заклепка	2	2x4
24	Гайка	4	M8	46	Градуировка	1	5133A2
25	Винт	4	M8x25	47	Кронштейн	1	5120
26	Прижимная пластина	2	5112	48	Штифт	1	4x20
27	Крепление	1	5111				

ЗАДНЯЯ БАБКА

3A,	ЗАДНЯЯ БАБКА										
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ				
1	Рукоятка	1	4033	17	Гайка	1	6012				
2	Рычаг	1	4032	18	Пиноль	1	6013				
3	Гайка	2	M10	19	Задняя бабка	1	6001				
4	Шайба	1	A10	20	Стопорный болт	1	6022				
5	Ручной маховик	1	6005	21	Рукоятка	1	6021				
6	Плоская пружина	1	4037	22	Вал	1	6017				
7	Кольцевой лимб	2	6010	23	Рукоятка	1	6004				
8	Винт	4	M6x16	24	Штифт	1	5x30				
9	Кронштейн	1	6011	25	Манжет	1	6018				
10	Масляный стакан	1		26	Винт	1	M10x50				
11	Подшипник	1		27	Винт	1	6003				
12	Ключ	1	4x15	28	Опора	1	6002				
13	Ходовой винт	1	6006	29	Вал	1	6019				
14	Запорная гайка	1	6023	30	Черный башмак на опоре	1	6020				
15	Масляный стакан	1		31	Гайка	1	M12				
16	Винт	2	M6x8								

СМЕННЫЕ ШЕСТЕРНИ

CM	СМЕННЫЕ ШЕСТЕРНИ											
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ					
1	Вишт	2	M6v12	12	Стопорное	1						
1	Dmin	4	WIOX12	12	кольцо	1						
2	Шайба	2	2003	13	Шайба	1						
3	Шестерня	1	2002C	14	Винт	1	M10x45					
4	Ключ	1	C5x8	15	Шайба	1	3037A					
5	Гайка	2	M10	16	Шестерня	1	3039C					
6	Шайба	1	3035	17	Ключ	1	5x18					
7	Шестерня	1	3038C	18	Шайба	1	3034B					
0	Полициии	1		10	Сменная	1	3076C					
0	подшинник	1		19	шестерня	1	3070C					
0	Mainter	1	3033	20	Сменная	1	3075C					
2	Манжет	1	5055	20	шестерня	1	3073C					
10	RUGUATI IN CARTON	1	30/3B	21	Сменная	1	3077C					
10	Зубчатый сектор	1	5045D	21	шестерня	1	30770					
11	Buur	1	3034	$\gamma\gamma$	Сменная	1	3078C					
11	DNHI	1	5054		шестерня	1	3078C					

Y 3	УЗЕЛ ПЕРЕКЛЮЧАТЕЛЯ УПРАВЛЕНИЯ											
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ					
1	Ходовой винт	1	1005B	12	Штифт	1	4x20					
2	Стержень	1	1006B	13	Кронштейн	1	1014B					
3	Кронштейн	1	1012	14	Пружина	1	1,2x8,10					
4	Штифт	2	6x65	15	Винт	2	M6x15					
5	Винт	2	M8x60	16	Кронштейн	1	1015B					
6	Масляный стакан	2		17	Рукоятка Шаровая	1	M10x32					
7	Шаровая	1		18	Рукоятка	1	1016					
8	Штифт	1	4x20	19	Стопорное кольцо	1						
9	Втулка	1	1035B	20	Пружина	1	1x5x30					
10	Ходовой винт	1	1010	21	Винт	1	M8x10					
11	Ключ	1										

УЗЕЛ ПЕРЕКЛЮЧАТЕЛЯ УПРАВЛЕНИЯ

УЗЕЛ СТАНИНЫ И ПРИВОДА

Y 3	УЗЕЛ СТАНИНЫ И ПРИВОДА											
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ					
1	Крышка	1	1021	9	Винт	1	M6x8					
2	Винт	2	1002	10	Мотор	1						
3	Гайка	2	1001	11	Проставка	4	08					
4	Рамная опора	1	1024	12	Винт	4						
5	Шайба	3	1013	13	Гайка	2	M6					
6	Винт	3		14	Винт	2	M8x45					
7	Ключ	1	8x40	15	Винт	2	M8x30					
8	Шкив	1	1003A5									

СПЕЦИАЛЬНЫЕ ПРИНАДЛЕЖНОСТИ

СП	СПЕЦИАЛЬНЫЕ ПРИНАДЛЕЖНОСТИ – ТОРМОЗНЫЕ ДЕТАЛИ												
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ						
2	Открытое стопорное кольцо	1		53	Пружина Штифт	1	5x25						
3	Блок тормоза	1		54	Пружина	1	1048						
4	Вал	1	1040	55	Вал	1	1047						
16	Винт	2	M6x12	56	Стопорное кольцо	1	20						
18	Винт	1	M4x10	57	Переключатель	1	1045						
19	Тяга	1	1043	58	Вал	1	1052						
20	Кронштейн	1	1053	59	Винт	1	M6x30						
21	Осевой стержень	1	1042	60	Тяга	1	1054						
22	Штифт	1	8x20	61	Пружина Штифт	1	5x40						
23	Переключатель	1	1041	62	Вал	1	1049-1						
24	Шайба	2		63	Винт	1	M6x12						
25	Открытый зажим	2	2.5x16	64	Соединительная муфта	1	1049-3						
27	Тяга	1	1044	65	Вал	1	1049-2						
28	Винт	1	M10x30	66	Опора	1	1050						
52	Вал	1	1051	67	Пружина Штифт	1	4x25						

СП	СПЕЦИАЛЬНЫЕ ПРИНАДЛЕЖНОСТИ – БАЗОВЫЕ ДЕТАЛИ										
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ				
1	Кожух для защиты от стружек	1	1023	31	Распорная пластина	1	8601				
5	Винт	4	M6x16	32	Гайка	4	M6				
8	Масляный поддон	1	1022	33	Правый кронштейн	1	8603				
26	Левый шкаф	1	8400	45	Правый шкаф	1	8500				
29	Левый кронштейн	1	8602	51	Винт	4	M6x16				
30	Винт	4	M6x16								

СП	СПЕНИАЛЬНЫЕ ПРИНАЛЛЕЖНОСТИ ЛЕТАЛИ СИСТЕМЫ ОХЛАЖЛЕНИЯ											
UII	специяльные принадлежности – детали системы охлаждения											
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ					
6	Трубка охлаждения	1		39	Фильтр	1	9203					
9	Винт	4	M5x12	40	Труба	1	9204					
10	Соединительная труба	1	9206	41	Обод	1						
11	Шайба	1	9207	42	Штифт	1	16x1000					
14	Кронштейн	1	9208	43	Охлаждающая жидкость	1						

	I		r		r		
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ
15	Вал	1	X6121-06011 A	44	Винт	4	M5x10
17	Винт	2	M8x35	46	Труба	1	M16x15
34	Трубка охлаждения	1		47	Металлическая труба	1	8x1800
35	Трубка охлаждения	1		48	Крышка	1	9210
36	Винт	4	M6x12	49	Труба	1	9206
37	Крышка	1	9201A	50	Ящик охладителя	1	9209
38	Прокладка	1	9205				

СП	СПЕЦИАЛЬНЫЕ ПРИНАДЛЕЖНОСТИ – ДЕТАЛИ ОСВЕЩЕНИЯ									
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ			
7	Рабочая лампа	1		13	Винт	2	M5x12			
12	Кронштейн	1	7015							

НЕПОДВИЖНЫЙ ЛЮНЕТ

HE	НЕПОДВИЖНЫЙ ЛЮНЕТ											
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ					
1	Вращаемая кнопка	3	8205	11	Шестиугольная винтовая гайка	1	M6					
2	Винт	3	M6x8	12	Винт	1	M6x25					
3	Манжет	3	8207	13	Корпус основания	1	8201					
4	Прижимной рычаг	3	8206	14	Шестиугольная винтовая гайка	1	M12					
5	Прижимная манжета	3	8208	15	Шайба	1	12					
6	Прижимное основание	3	8209	16	Прижимная пластина	1	6020					
7	Верхняя часть	1	8202	17	Бол с квадратной головкой	1	M12x60					
8	Винт	3	M6x10	18	Пружина Штифт	1	4x25					
9	Винт	3	M6x16	19	Стопорный рычаг	1	8203					
10	Шестиугольная винтовая гайка	3	M6	20	Стопорная винтовая гайка	1	8204					

ПОДВИЖНОЙ ЛЮНЕТ

ПО	движной люн	ΉET					
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ
1	Винт	2	M6x6	7	Винт	2	M6x10
2	Вращаемая кнопка	2	8205	8	Шестиугольная винтовая гайка	2	M6
3	Манжет	2	8207	9	Винт	2	M6x16
4	Прижимной рычаг	2	8206	10	Корпус	1	8201
5	Прижимная манжета	2	8208	11	Болт	2	M8x40
6	Прижимное основание	2	8209				

УСТРОЙСТВО ПОЗИЦИОНИРОВАНИЯ

Страница -61-

VC									
УC	устроиство позиционирования								
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ		
1	Вращаемая кнопка	1	8705	5	Корпус	1	8703		
2	Штифт	1	M3x6	6	Указатель	1	8707		
3	Ходовой винт	1	8706	7	Винт	1	M6x10		
4	Прижимная пластина	1	8704	8	Винт	2	M6x12		

ЗАЩИТНАЯ КРЫШКА

3A	ЗАЩИТНАЯ КРЫШКА							
№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	
1	Гайка	1	M6	5	Вал	1	8902	
2	Винт	1	M6 X16	6	Защитная крышка	1	8903	
3	Распределительная коробка	1	8901	7	Штифт	1	M4 X12	
4	Винт	2	M6x 45					

ЗАЩИТНОЕ ОГРАЖДЕНИЕ

3A	ЗАЩИТНОЕ ОГРАЖДЕНИЕ								
N⁰	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ	№	НАИМЕНОВАНИЕ	КОЛ- ВО	ПРИМЕЧАНИЕ		
1	Левый ящик	1	1120	5	Фартук	1	4000		
2	Нижняя планка	1	1118	6	Кронштейн	1	1012		
3	Верхняя планка	1	1117	7	Редуктор	1	3000		
4	Правый ящик	1	1110						

Дистрибьютор:

Серия SINO

ЦИФРОВЫЕ ИНДИКАТОРЫ

SDS6

Руководство по эксплуатации

Уважаемые пользователи:

- 1. Благодарим Вас за приобретение устройства цифровой индикации компании «Guangzhou Lokshun CNC Equipment Ltd.».
 - «S» _ зарегистрированный товарный «Sino», Это высокоточные знак. измерительные приборы, главным образом, для типов ручных разных обрабатывающих инструментов или испытательного оборудования, предназначенные для выполнения функций регистрации и локализации.
- 2. Компания «Guangzhou Lokshun CNC Equipment Ltd.» является владельцем зарегистрированных товарных знаков « >». Примечание: Внимательно прочитайте изложенные далее инструкции по технике безопасности и меры предосторожности для обеспечения безопасной эксплуатации нового измерительного прибора с цифровой индикацией.

Использование руководства:

- Главы и разделы перечислены в содержании (🜮 см. стр. 5-6 далее).
- В настоящем руководстве изложены инструкции по использованию клавиш на панели цифрового индикатора SDS6 и приборов других серий, в том числе:
 - SDS6-2V Индикатор, используемый для 2-координатных фрезерных, шлифовальных и токарных станков.
 - SDS6-3V Индикатор, используемый для 3-координатных фрезерных, токарных станков и станков электроискровой обработки.

Рекомендуется:

- Прочитайте инструкции по применению клавиш, представленных в Разделе 1 на стр. 1-4, на панели цифрового индикатора SDS6, описанного в настоящем руководстве.
- Внимательно прочитайте изложенные далее правила техники безопасности и инструкции в Разделе 2 (С см. стр. 102-107), которые необходимо соблюдать для обеспечения безопасной эксплуатации цифрового индикатора.

Правила техники безопасности:

Осторожно:

• Для предотвращения поражения электрическим током или пожара не допускайте разлива или попадания брызг хладагента непосредственно на прибор.

Внимание:

- Для предотвращения поражения электрическим током запрещается вскрывать корпус, прибор не содержит внутренних деталей, требующих обслуживания пользователем. Для ремонта обращайтесь к квалифицированному техническому специалисту.
- Если прибор не используется в течение длительного времени, подзаряжаемые литиевые батареи устройства хранения данных внутри цифрового индикатора могут быть повреждены. Для замены батарей перед возобновлением эксплуатации обращайтесь в представительство компании «Guangzhou Lokshun CNC Equipment Ltd.» или к квалифицированному специалисту.

Примечания:

- При обнаружении дыма или необычного запаха, исходящего из цифрового индикатора, немедленно извлеките вилку из розетки питания, поскольку продолжение работы в таком состоянии может привести к поражению электрическим током или пожару. Запрещается производить ремонт собственными силами, обращайтесь в компанию «Guangzhou Lokshun CNC Equipment Ltd.» или в представительство компании.
- Цифровой индикатор представляет собой высокоточное устройство регистрации с оптической электронной линейкой. Поскольку обрыв или повреждение оболочки соединительных проводов между двумя деталями во время использования может привести к ошибке данных регистрации, на это стоит обратить особое внимание пользователя.
- Запрещается производить ремонт или переоснащение цифрового индикатора собственными силами, так как это может привести к выходу из строя или повреждению прибора. При обнаружении нарушений обращайтесь в компанию «Guangzhou Lokshun CNC Equipment Ltd.» или в представительство компании.
- В случае повреждения оптической электронной линейки, используемой в цифровом индикаторе, запрещается заменять ее линейками сторонних производителей, поскольку изделия других компаний обладают иными характеристиками и оснащаются несоответствующими индикаторами и проводами. Соединения проводов следует выполнять только под руководством квалифицированных технических специалистов, в противном случае цифровой индикатор может быть поврежден.

С Датчик перемещений соответствует требованиям директив 2006/95/ЕС по низковольтной электрической аппаратуре и 2004/108/ЕС по электромагнитной совместимости.

Компания Guangzhou Lokshun CNC Equipment Ltd прошла лицензирование и аудит согласно стандартам ISO 9001 – Система обеспечения качества, ISO 14001 – Система охраны окружающей среды, OHSAS 18001 – Система охраны труда и техники безопасности.

Примечание:

- Содержание настоящего руководство является собственностью компании «Guangzhou Lokshun CNC Equipment Ltd.».
- Характеристики продукта могут быть изменены без уведомления.
- Компания ООО «МеталМастер» не несет ответственность за качество работы цифровых индикаторов Sino, установленных на станках иных производителей.
- Данное руководство предназначено исключительно для станков, поставляемых компанией ООО «МеталМастер.»

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

Описание панели управления и клавиатуры ПАНЕЛЬ УПРАВЛЕНИЯ И КЛАВИАТУРА ИНДИКАТОРА SDS6-3V

ПАНЕЛЬ УПРАВЛЕНИЯ И КЛАВИАТУРА ИНДИКАТОРА SDS6-2V

Описание панели управления и клавиатуры						
	Перечень клавиш	прибора SDS6				
$X_0 Y_0 Z_0$		Клавиши сброса отображаемого значения на нуль				
XVZ		Клавиши выбора оси				
01234 56739		Клавиши ввода цифр				
+D×+E		Клавиши операций (на панели функциональных клавиш вычислений)				
CTR		Функциональная клавиша вычислений (на панели функциональных клавиш вычислений)				
CA		Клавиша отмены ввода (результата вычисления) (на панели функциональных клавиш вычислений)				
arc		Клавиша тригонометрических функций инвертирования (на панели функциональных клавиш вычислений)				
\bigcirc		Клавиша вычисления квадратного корня (на панели функциональных клавиш вычислений)				
$\overline{\mathbf{O}}$		Клавиша ввода десятичной точки				
\pm		Клавиша ввода символа «плюс» или «минус»				
ENT		Клавиша ввода данных				
CLS		Клавиша сброса отображаемого значения на нуль				
		Функциональная клавиша переключения на среднюю точку				
(%)		Клавиша преобразования индикации из метрической системы в британскую систему единиц измерения				

Описание пан	Описание панели управления и клавиатуры						
HA	Функциональная клавиша режима ожидания						
ZERO	Функциональная клавиша ввода 200 нулевых положений						
	Функциональная клавиша расчета ДУГИ по углу/радиусу (функциональная клавиша «ARC» («ДУГА»)						
	Функциональная клавиша равномерного распределения отверстий по окружности (функциональная клавиша «РСD» («Распределение по окружности»))						
	Функциональная клавиша распределения высверливаемых отверстий вдоль наклонной линии						
	Функциональная клавиша обработки наклонной поверхности; на панели функциональных клавиш функции тригонометрических вычислений по синусу						
	Функциональная клавиша поэтапной обработки внутренней полости; на панели функциональных клавиш функции тригонометрических вычислений по косинусу						
	Функциональная клавиша коррекции на инструмент; на панели функциональных клавиш функции тригонометрических вычислений по тангенсу						
M	Клавиша переключения режимов относительной/абсолютной индикации						
	Клавиши выбора члена высшего/ низшего порядка или обработки плоскости						
	——— Клавиша функции измерения конуса						

Описание па	нели управления и клавиатуры
	Клавиша вызова хранилища 200 инструментов
	Клавиша ввода данных в хранилище 200 инструментов; клавиша ввода радиуса
EDM	Функциональная клавиша вывода сигнала совпадения «EDM» (только для индикатора SDS6-3V)
	Функциональная клавиша фильтрации данных (только для индикатора SDS6-2V)

www.metalmaster.ru

Содержание

A.	Базовые функции	1
В.	Дуга плавного перемещения по радиусу (применимо для режимов	
	MILL_MS / MILL_M (многофункциональный / универсальный	
	фрезерный станок))	15
C.	Простая дуга перемещения по радиусу (применимо для режимов	
	2V_MILL_MS / 2V_MILL_M (2-координатный многофункциональный /	
	универсальный фрезерный станок))	28
D.	Высверливание отверстий вдоль наклонной линии (применимо для	
	режима MILL MS (многофункциональный фрезерный станок))	35
\mathbf{E}_1	Функция 200 дополнительных нулевых положений (применимо для	
_	режимов MILL MS / MILL M / EDM (многофункциональный /	
	универсальный фрезерный станок и электроискровой станок))	39
\mathbf{E}_2	Функция 200 дополнительных нулевых положений (применимо для	
_	режима LATHE (токарный станок))	48
E ₃	Функция 200 дополнительных нулевых положений (применимо для	
U U	режима 2V GRIND (2-координатный шлифовальный станок))	55
F	Функция равномерного распределения отверстий на окружности «PCD»	
	(применимо для режимов MILL MS / MILL M / EDM	
	(многофункциональный / универсальный фрезерный станок и	
	электроискровой станок))	62
G	Обработка поверхности под углом (применимо для режима MILL MS	
	(многофункциональный станок))	66
Н	Функция вычислений (применимо для режима MILL MS	
	(многофункциональный станок))	70
Ι	Компенсация диаметра инструмента (применимо для режима	
	3V_MILL_MS (3-координатный многофункциональный станок))	73
J	Хранилище 200 инструментов (применимо для режима LATHE (токарный	
	станок))	76
K	Функция измерения сужения конуса (применимо для режима LATHE	
	(токарный станок))	80
L	Функция вывода сигнала совпадения (применимо для режима 3V-EDM (3-	
	координатный станок электроискровой обработки))	82
Μ	Функция цифрового фильтра (применимо для режима 2V-GRIND (2-	
	координатный шлифовальный станок))	91
Ν	Функция N3 (применимо для режима 2V-MILL_MS (2-координатный	
	многоцелевой фрезерный станок))	93
0	Поступательная обработка внутренней прямоугольной полости	
	(применимо для режима 2V-MILL_MS (2-координатный многоцелевой	
	фрезерный станок))	97
Р	Дополнительная информация	.100

А. Базовые функции

A.

Базовые функции

А. Базовые функции

С гордостью заявляем, что данное устройство цифровой индикации с оптической линейкой для измерения обрабатывающих инструментов является наиболее популярным в Европе.

Внимательное изучение руководства упростит использование данного устройства. Благодарим за внимание!

І. Применение

1. Запуск, самодиагностика

- 1) Выбор напряжение питания, включение питания.
- Самодиагностика измерительного прибора.
- Самодиагностика завершается, выполняется переход в рабочий режим.

Примечание: Индикатор для 2-координатных станков содержит только ось Х

и ось Y, индикатор для 3-координатных станков содержит ось X, ось Y и ось Z. Для токарного станка индикатор отображает обозначение «LATHE»; для шлифовального станка – обозначение «GRIND»; для многофункционального фрезерного станка – обозначение «MILL_MS»; для универсального фрезерного станка – обозначение «MILL_M»; для станка электроискровой обработки – обозначение «EDM».

2. Настройка системы

В процессе самодиагностики нажмите клавишу , после завершения самодиагностики система переходит в режим настройки.

1) Настройка разрешения оси Х.

_____S 🛛 🗶 🛛

5 🖾

Y

RESLN

Ввод различных настроек разрешения нажатием цифровых клавиш:

Цифровая клавиша	0	1	2	5	7	8	9
Разрешение (мкм)	10	1	2	5	0,1	0,2	0,5

Нажмите клавиши → , чтобы перейти к следующему действию.

2) Настройка разрешения оси Ү.

Процедура настройки аналогична настройке разрешения оси Х.

Нажмите клавиши $\fbox \to \fbox$, чтобы перейти к следующему действию.

	А. Базовые функции			
3)	Настройка разрешения оси Z.		\boxtimes	ZIREISLIN
	Процедура настройки аналогична настройке разреш	ения оси Х.		
	Нажмите клавиши 🕅 → 🚯, чтобы перейти к след	цующему дейст	вию.	
4)	Настройка направления подсчета кодового датчика	линейных пере	мещен	ний по оси Х.
	Нажмите клавишу 💽 для прямого подсчета.		\boxtimes	XDIR
	Нажмите клавишу 🕕 для обратного подсчета.			
	Нажмите клавиши 🕅 → 🐼, чтобы перейти к след	цующему дейст	вию.	
5)	Настройка направления подсчета кодового датчика	линейных пере	мещен	ний по оси Ү.
	Процедура настройки аналогична настройке датчика оси X.			YUIR
	Нажмите клавиши 🕅 → 📢, чтобы перейти к след	цующему дейст	вию.	
6)	Настройка направления подсчета кодового датчика	линейных пере	мещен	ний по оси Z.
	Процедура настройки аналогична настройке датчика оси X.			
	Нажмите клавиши 🕅 → 📢, чтобы перейти к след	цующему дейст	вию.	
7)	Выбор типа машины.			
	Индикатор SDS6-3V: 0 – Обозначение многофункционального фрезерно 1 – Обозначение универсального фрезерного стан 2 – Обозначение станка электроискровой обработ 3 – Обозначение токарного станка	юго станка іка гки		IILLMS IILLM EDM LATHE
	Индикатор SDS6-2V:	юго станка іка		IILLMS IILLM SRIND LATHE

Нажмите клавиши [₩] → []], чтобы перейти к следующему дейсти	зию.
Выбор интегрирования оси Ү с осью Z.	
Нажмите клавишу 💽 или 🕕, чтобы задать изменение.	NONE
«NONE» («НЕТ») означает отмену интегрирования.	INGREAT
«INGREAT» означает выполнение интегрирования и индикацию значения светолиолом оси Y	интегрированного

А. Базовые функции

Нажмите клавиши $\fbox \to \fbox$, чтобы перейти к следующему действию.

Примечание: Данная функция предусмотрена только для 3-координатного токарного станка.

9) Выбор типа компенсации.

8)

- Выбор линейной компенсации погрешности - «LINEAR» («ЛИНЕЙНАЯ»)

- Выбор сегментированной компенсации погрешности -«SEGMENT» («СЕГМЕНТИРОВАННАЯ»)

Нажмите клавиши $\longrightarrow \longrightarrow$, чтобы перейти к следующему действию.

10) Выбор типа индикации значения оси.

– Функция линейной индикации – «RAS_X»

– Функция угловой индикации – «ENC_X»

Примечание: при выборе угловой индикации выполняется автоматический переход к функции настройки оси кодового датчика, угловая индикация отображается в минутах и

секундах и режиме десятичной индикации. В обычном режиме для переключения нажмите клавишу «+». При

выборе представления в дюймах в режиме угловой индикации приоритетной является угловая индикация, и диапазон значений угла составляет от 0 до 360 градусов.

11) Самодиагностика.

Нажмите клавишу 🚯 два раза, чтобы запустить программу самодиагностики, затем или снова нажмите клавишу со стрелкой вниз, чтобы выйти из нажмите (•) программы.

	L	Ι	N	Ε	AR
2	E	6	M	E	NT

ENEL	. X
RAS_	X

	E	N	Ε	_	Y	
\Box	R	A	5		¥	Γ

	ENELZ	
\square	RAS_Z	

|--|

5

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

3. Сброс отображаемого значения на нуль

1) Сброс на нуль можно выполнить в любой момент, здесь приводится пример для индикации значения оси Х.

А. Базовые функции

Нажмите клавиши $X \rightarrow \mathbb{G}$ 2)

Предварительная настройка данных 4.

- 1) Как показано на рисунке, по завершении обработки отверстия А положение заготовки скорректировано для обработки отверстия В.
- 2) Выровняйте инструмент с отверстием А.
- 3) Выберите клавишу оси X X.
- 4) Нажмите клавишу (5). Введите значение (в случае ввода неверного значения нажмите клавишу 🕅 и заново введите верное значение).
- 5) Нажмите клавишу (три обнаружении ошибки на этом этапе повторите действия 3-5).
- 6) Переместите стол станка в положение 13, можно начинать обработку отверстия В.

ALE
)

5. Режим абсолютной/относительной индикации/ индикации пользовательских систем координат

При нажатии клавиш 🚯 и 🚯 выполняется поочередное 🏾 переключение режимов абсолютной/относительной индикации, далее приводится описание процедуры.

1) Направьте инструмент на точку М в режиме абсолютной индикации.

Нажмите клавишу 🕜 или 🗘 Нажмите клавиши 🕅 → 🖽

2) Переместите обрабатывающий инструмент в положение А.

0000 🖂

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

	А. Базовые функции		
3)	Переместите обрабатывающий инструмент в положение В.	 20000 (X)	
4)	Нажмите клавиши $\textcircled{0} \rightarrow \bigotimes \rightarrow \textcircled{0},$ $\curlyvee \rightarrow \textcircled{0}$.	 	INC
5)	Переместите обрабатывающий инструмент в положение С.	- <i> 0000</i> Ø	INC
6)	Переместите обрабатывающий инструмент в положение D.	0000 Ø	INC
7)	Вернитесь в режим абсолютной индикации нажатием клавиши 😥.	300000 ©	ALE
8)	Переместите обрабатывающий инструмент в положение Е.	50000 Ø	ALE

Примечание: Переход в режим абсолютной индикации и в режим относительной индикации следует выполнять по отдельности. В режиме абсолютной индикации на дисплее сообщений отображается «ALE». В режиме относительной индикации на дисплее сообщений отображается «INC».

Нажатием клавиш (), () можно переключать между двумя режимами индикации, а также можно перейти в режим индикации 200 наборов пользовательских координат, как показано на следующей схеме последовательности действий.

Нажмите клавишу (200), чтобы напрямую перейти в режим индикации 200 наборов пользовательских координат.

7

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

А. Базовые функции

6. Клавиша индикации 🕼

Как показано на рисунке, необходимо определить расстояние между двумя точками.

1) Установите инструмент так, чтобы он касался одной из кромок заготовки. Выполните сброс отображаемого значения оси Х на нуль, затем переместите инструмент в направлении стрелки так, чтобы он касался другой кромки заготовки.

Выполните следующее действие, чтобы определить центральное положение.

- Нажмите клавишу оси Х 🔀 2)
- Нажмите клавишу [⁄ 🤉 3)
- 4) Переместите обрабатывающий инструмент, чтобы сбросить отображаемое значение оси на нуль и установить его в

центральное положение (таким же способом можно определить центральное положение для оси Y и для оси Z).

Примечание: Данная функция не предусмотрена для токарных станков.

7. Переключение индикации «R/D» (радиус/диаметр)

Ось Х расположена вдоль центральной линии.

- 1) Режущий инструмент в положении А.
- Нажмите клавиши $X \to V_2$. 2)
- 3) Переместите режущий инструмент в положение В.
- Нажмите клавиши $X \to V_2$. 4)

Примечание: Данная функция предусмотрена только для токарных станков. Горящий индикатор «SEL» означает индикацию диаметра, для оси Y и Z диаметр/радиус не отображается.

00 🕅

(X)

(x)

www.metalmaster.ru

А. Базовые функции

8. Переключение типа индикации с суммированием значений осей

В режиме функции суммирования значений осей Y и Z нажмите клавишу (arc), чтобы переключить режим индикации.

- Если ранее выбран режим индикации с суммированием, нажмите клавишу (т), чтобы перейти в режим разделения.
- 2) Если ранее выбран режим индикации с разделением, нажмите клавишу (аго), чтобы перейти в режим суммирования.

Примечание: Данная функция предусмотрена только для цифрового индикатора токарного станка; для опции параметра «выбор индикации с суммированием значений осей Y/Z» должен быть установлен режим суммирования; для оси Z отображается только цифровое значение, невозможно предварительно задать или сбросить значение.

9. Переключение индикации «М/І» (система измерения в миллиметрах (мм)/система измерения в дюймах)

Нажмите клавишу (т), чтобы переключить индикацию размера в мм/в дюймах.

- 1) Исходная индикация в миллиметрах, можно выбрать индикацию в дюймах.
- 2) Нажмите клавишу 🕅
- Нажмите клавишу () или (), чтобы выбрать разряды десятичного числа (4 или 5 разрядов).
 Нажмите клавишу ().
- 4) Перейдите в режим обработки отверстия В.
- 5) Нажмите клавишу (М), чтобы перейти сразу в режим (Б) БО измерения в миллиметрах.

А. Базовые функции

10. Сегментированная компенсация погрешности

Примечание: Сегментированная компенсация погрешности предусмотрена только для метрической системы. После сегментированной компенсации погрешности можно свободно переключать индикацию между метрической и британской системой.

Существует два метода сегментированной компенсации погрешности цифрового индикатора:

- 1. Для выполнения компенсации погрешности в качестве механических начальных координат назначается исходное положение (рис. 1).
- 2. Для выполнения компенсации погрешности в качестве механических начальных координат назначается 1-ый абсолютный нуль растровой линейки (рис. 2).

- L: Интервал эффективного диапазона растровой линейки
- L1: Длина сегмента компенсации

L2: Эффективный интервал сегмента компенсации

- 1. Настройка в соответствии со схемой 1. Далее приводится описание метода настройки параметров:
- Переместите растровую линейку в сторону наименьших значений координат. Перейдите в режим абсолютной прямоугольной системы координат «ALE».
 - сторону | | | **ПОПО** 🖾 | **ВА**БЕ | | | йдите в системы | | ПОПОП 🕅
- Нажмите клавиши (X) → (M), чтобы активировать функцию ввода множества сегментов компенсации для оси X (способы ввода для осей Y и Z аналогичны вводу для оси X).
- 3) Настройка сегментированной компенсации погрешности.
 - 1. FIND_ZE

(Поиск начальных координат, применимых для настройки сегментированной компенсации погрешности.)

- Нажмите клавишу 💽, чтобы перейти к следующему действию.
- 2. SET_SEG

(Настройка сегментированной компенсации погрешности.) Нажмите клавишу [11], чтобы перейти к следующему действию

А. Базовые функции

Примечание: Перед настройкой сегментированной компенсации погрешности необходимо определить начальные координаты.

Определение механических начальных координат. 4)

Существует два способа настройки начальных координат для компенсации.

1. Нажмите клавишу (М), чтобы выбрать текущее положение в качестве начальных координат.

		-	<u> </u>	<u> </u>	

2. Нажмите клавиши (HA) ENT чтобы выбрать 1-ый \rightarrow линейке В качестве абсолютный нуль на растровой механических начальных координат.

Переместите обрабатывающий инструмент в прямом направлении по оси Х и найдите 1-ый абсолютный нуль на растровой линейке в качестве механических начальных координат. После назначения начальных координат выполняется автоматический переход к следующему действию ввода данных. При этом отображается фактическое значение оси Х на растровой линейке, для оси У вводится значение, измеренное лазером.

5) Ввод настройки компенсации для 1-го сегмента.

Переместите обрабатывающий инструмент в прямом	□
направлении по оси Х до положения компенсации.	

(При нажатии клавиши 🕅 для оси Ү отображается значение оси Х, и это означает,
что задано значение компенсации; в случае ввода неверного значения не перемещайте
растровую линейку, нажмите клавишу 🙆, затем клавишу 😥, при этом
светодиодный цифровой дисплей для оси У переходит в режим ввода; теперь можно
ввести верное значение.)

Нажмите	клавищу		чтобы	перейти	и к	настрой	ке	
слелующей	точки.	Ľ,	110021					
Примечани	е: При	активации	и данно	й функ	ции	для оси	Х	
отображает	ся значе	ение коор	динаты,	, тогда	как	для оси	Y	
отображает	ся ста	ндартное	значе	ение	или	значени	ie,	Станд
измеренное	лазером	ĺ.						значени

Значение координаты

ие, измеренное лазером

19985 🖾 No 🗆 2

6) Ввод настройки компенсации для 2-го сегмента.

Нажмите клавиши $2 \rightarrow 0 \rightarrow \mathbb{ENT}$.

Нажмите клавишу 🚯, чтобы перейти к настройке следующей точки.

0 219191915

	А. Базовые функции	
7)	Ввод настройки компенсации для 3-го сегмента.	הרדרומות ואות המתוודים
	Нажмите клавиши $3 \rightarrow 0 \rightarrow \mathbb{ENT}$.	
	Нажмите клавишу 💽, чтобы перейти к настройке следу	ющей точки.
8)	Ввод настройки компенсации для 4-го сегмента.	4000001 (∞) [NI0] 141
	Нажмите клавиши $4 \rightarrow 0 \rightarrow \mathbb{N}$.	
	Нажмите клавишу 💽, чтобы перейти к настройке следу	ющей точки.
9)	Ввод настройки компенсации для 5-го сегмента.	S0001ST/ © [NI0]S
	Нажмите клавиши $5 \rightarrow 0 \rightarrow \mathbb{N}$.	
	Нажмите клавишу 💽, чтобы перейти к настройке следу	ющей точки.
10)	Ввод настройки компенсации для 6-го сегмента.	(
	Нажмите клавиши $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$.	

По завершении процедуры ввода настроек нажмите клавишу (), чтобы выйти из режима настройки.

Примечание: Область ввода значений компенсации для оси Y и для оси Z соответствует области отображения координат оси X.

2. Метод отмены значения сегментированной компенсации

Значение сегментированной компенсации применяется только для цифрового индикатора, растровой линейки и обрабатывающего инструмента в совокупности. Если растровая линейка или цифровой индикатор со значением сегментированной компенсации, заданным для обрабатывающего инструмента, переключаются на другой обрабатывающий инструмент, необходимо выполнить повторную настройку значения сегментированной компенсации. Если функция сегментированной компенсации не требуется, значение сегментированной компенсации следует отменить. Далее приводится описание процедуры отмены:

В соответствии с процедурой настройки сегментированной компенсации, описанной выше, при вводе количества точек компенсации задайте «0» в качестве сегментов компенсации, после этого инициализируются все параметры настройки компенсации. При этом все значения компенсации, заданные ранее, отменяются автоматически.

А. Базовые функции

3. Определение функции назначения механических начальных координат.

Если при перемещении растровой линейки питание выключено, или растровая линейка перемещается до включения питания, после перезапуска, необходимо снова определить механическую исходную точку. При перемещении с выключенным питанием или до включения питания начальная координата обрабатывающего инструмента может не совпадать со значением на дисплее цифрового индикатора. Если механическая исходная точка не определена, неверные взаимные положения переносятся в дальнейшем в пользовательскую систему координат. При расчете пользовательских координат значение сегментированной компенсации определяется в соответствии с неверными механическими координатами, что приводит к серьезной ошибке отображения координат.

Далее приводится описание процедуры определения механических начальных координат:

- 1) Переместите растровую линейку в положение, которое ранее назначено в качестве механических начальных координат, затем введите настройки сегментированной компенсации. Нажмите клавишу (), выберите функцию FIND_ZE, затем снова нажмите клавишу () и выберите текущее положение в качестве начальных координат. Когда определен абсолютный нуль, он принимается в качестве механической начальной координаты. Внутренние данные цифрового индикатора обрабатываются автоматически. Теперь нажмите клавишу, чтобы выйти из режима настройки сегментированной компенсации и завершить определение механических начальных координат. (Примечание: Применимо для настройки параметров в соответствии со схемой 1.)
- 2) Прежде всего переместите растровую линейку к наименьшему значению, затем задайте настройки сегментированной компенсации. Нажмите клавишу , выберите функцию FIND_ZE. Активируйте интерфейс для выбора способа компенсации, нажмите клавиши → , чтобы перейти к оси X и определить статус абсолютного нуля. Когда определен абсолютный нуль, он принимается в качестве механической начальной координаты. Внутренние данные цифрового индикатора обрабатываются автоматически. Теперь нажмите клавишу , чтобы выйти из режима настройки сегментированной компенсации и завершить определение механических начальных координат. (Примечание: Применимо для настройки параметров в соответствии со схемой 2.)

Примечание: Во время определения механических начальных координат выполняется настройка пользовательских координат.

Совет: Определите механические начальные координаты перед началом работы после включения питания, чтобы обеспечить соответствие начальной координаты обрабатывающего инструмента значению, заданному в цифровом индикаторе.

А. Базовые функции

11. Линейная компенсация погрешности

Функция линейной компенсации погрешности используется для линейной коррекции погрешности измерительной системы со штриховыми мерами.

Коэффициент коррекции S =(L–L')/(L/1 000) мм/м

L – фактическая измеренная длина (мм)

L' – отображаемое значение на дисплее цифрового индикатора (мм)

S – фактический коэффициент (мм/м), символ «+» означает, что фактическая длина больше, символ «–» означает, что фактическая длина меньше.

Диапазон компенсации: от -1 500 мм/м до +1 500 мм/м

Пример: Фактическая измеренная длина рабочего стола обрабатывающего инструмента составляет 1 000 мм, на дисплее цифрового индикатора отображается значение 999,98 мм.

 $S = (1\ 000-999,98)/(1\ 000/1\ 000) = 0,02 \text{ mm/m}$

- 1) Выберите ось 🔀.
- 2) Нажмите клавишу 🕅
- 3) Введите новый коэффициент коррекции: $0 \rightarrow 0 \rightarrow 0 \rightarrow 2$.
- 4) Нажмите клавишу 🕅

0.020	\boxtimes]
-------	-------------	--	---

Примечание: Линейную компенсацию погрешности можно применять только в режиме абсолютной индикации (на дисплее отображается сообщение «ALE») и в метрической системе.

12. Сохранение данных в случае сбоя питания

В процессе обработки заготовки могут возникать сбои питания, или могут требоваться временные отключения, при этом цифровой индикатор автоматически сохраняет в памяти рабочее состояние (например, рабочий режим для каждой оси, отображаемые данные и коэффициент линейной компенсации погрешности), действующее непосредственно перед сбоем питания. При каждом включении питания после сбоя цифровой индикатор восстанавливает рабочее состояние, действовавшее непосредственно перед сбоем питания после выполнения самодиагностики, а также значения, которые отображались перед сбоем (выключением) питания, после чего возобновляется обработка.

А. Базовые функции

13. Переключатель в режим ожидания (данная функция не предусмотрена в цифровых индикаторах для 3-координатных станков)

Переключатель на задней панели цифрового индикатора можно задействовать во время обработки заготовки. Хотя цифровые индикаторы серии SDS оснащены памятью сохранения данных в случае сбоя питания, обрабатывающий инструмент может перемещаться уже после сбоя. В этом случае при последующем включении станка восстанавливается рабочее состояние до сбоя, которое не является фактическим новым состоянием. Если оператору требуется приостановка обработки на время отдыха или по другим причинам, можно использовать переключатель в режим ожидания во избежание описанной выше ситуации.

В рабочем режиме, кроме абсолютной индикации «ALE», если требуется задействовать переключатель в режим ожидания, нажмите клавишу (), при этом дисплеи цифрового индикатора деактивируются. При возобновлении обработки снова нажмите клавишу (), после чего все дисплеи прибора активируются. Несмотря на то, что обрабатывающий инструмент может перемещаться после деактивации дисплея, прибор регистрирует и запоминает конечное состояние до перемещения обрабатывающего инструмента. После активации дисплеев отображается фактическое рабочее состояние.

Примечание: Когда задействуется переключатель в режим ожидания, цифровой индикатор не переходит в состояние полного выключения; при выключении прибора с помощью выключателя питания на задней панели, переключатель в режим ожидания не функционирует.

В. Дуга плавного перемещения по радиусу (для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

B.

Дуга плавного перемещения по радиусу

(применимо для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

В. Дуга плавного перемещения по радиусу

(для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

Функция расчета дуги плавного перемещения по радиусу (функция «ARC» («ДУГА»))

При обработке литых заготовок часто необходима обработка по дуге окружности. В случае, когда обработка планируется для отдельной заготовки, требуется простой контур и небольшой объем обработки по дуге окружности, однако это может обуславливать высокие затраты времени и средств на планирование задания цифрового управления обрабатывающим инструментом.

Расширенная функция расчета дуги плавного перемещения по радиусу, предусмотренная в цифровом индикаторе модели SDS6, позволяет быстро и просто выполнять обработку отдельной заготовки, например, литого медного электрода, на универсальном фрезерном станке. Данная функция расчета дуги обеспечивает возможность оптимального контроля плавного перемещения по дуге окружности. Расстояние между двумя соседними рабочими точками является постоянным, и плавность перемещения по дуге окружности можно контролировать путем настройки этого расстояния.

Данная функция используется для обработки по дуге окружности. ^① В окне сообщений отображается подсказка оператору о вводе всех параметров, которые должны быть определены, что упрощает работу. ^② Данная функция может быть основана на вводе настройки «MAX CUT» («MAKC. PA3PE3») для расчета оптимальной глубины разреза и, следовательно, для обеспечения более точной плавности перемещений по дуге окружности в процессе управления оператором.

1) Для использования функции расчета дуги по радиусу неопытный оператор должен сначала тщательно изучить систему координат.

В. Дуга плавного перемещения по радиусу

(для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

- Рис. 1
- Теперь необходимо определить координаты на плоскости и начальный и конечный угол дуги окружности.

На плоскости XY, XZ и YZ координата точки является ее положением относительно нулевой точки на плоскости.

Координата нулевой точки О: (0, 0) Координата точки А: (20, 20) Координата точки В: (30, 10) Координата точки С: (-20, 20) Координата точки D: (-30, 10) Координата точки Е: (-30, -10) Координата точки F: (-20, -20) Координата точки G: (30, -10) Координата точки H: (20, -20)

На плоскости XY, XZ и YZ начальный угол и конечный угол дуги окружности отсчитываются против часовой стрелки.

Рис. 3

Как показано на рис. 3:

Дуга AB
or A до B:
$$0^{\circ} \rightarrow 90^{\circ}$$

or B до A: $90^{\circ} \rightarrow 0^{\circ}$

Дуга BC
or C до B: $180^{\circ} \rightarrow 90^{\circ}$
or C до D: $180^{\circ} \rightarrow 90^{\circ}$

Дуга CD
or D до C: $270^{\circ} \rightarrow 180^{\circ}$
or D до C: $270^{\circ} \rightarrow 180^{\circ}$

Дуга DA
or A до D: $360^{\circ} \rightarrow 270^{\circ}$
or D до A: $270^{\circ} \rightarrow 360^{\circ}$

Дуга BE
or E до B: $45^{\circ} \rightarrow 90^{\circ}$

Дуга BE
or B до E: $90^{\circ} \rightarrow 45^{\circ}$

В. Дуга плавного перемещения по радиусу

(для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

3) Процедура использования функции расчета дуги по радиусу.

Как показано на рисунках (a), (b) и (c), установите все оси в исходное положение по завершении позиционирования инструмента и ввода соответствующих настроек инструмента (задайте положение инструмента после назначения положения инструмента в качестве нулевой точки).

Нажмите клавишу 💓, активируйте функцию расчета дуги по радиусу.

- 1. Выберите функцию дуги плавного перемещения по радиусу «SMOOTH» («ПЛАВНАЯ ДУГА»).
- 2. Выберите плоскость обработки XY, XZ или YZ. «ARC-XY» («ДУГА НА ПЛОСКОСТИ XY») «ARC-XZ» («ДУГА НА ПЛОСКОСТИ XZ») «ARC-YZ» («ДУГА НА ПЛОСКОСТИ YZ»)

3. Введите центральное положение дуги окружности «СТ РОЅ» («ЦЕНТРАЛЬНОЕ ПОЛОЖЕНИЕ»)

Центральное положение дуги окружности является положением окружности относительно положения инструмента сразу после настройки и установки инструмента.

При обработке по дуге на плоскости XZ или YZ:

Как показано на рис. (b), когда используется фрезеровочный инструмент с плоским торцом, центральным положением окружности является положение точки О относительно точки В на инструменте.

Как показано на рис. (с), когда используется фрезеровочный инструмент, перемещаемый по дуге окружности, центральным положением окружности является положение точки О относительно точки С на инструменте.

При обработке по дуге на плоскости XY, как показано на рис. (а), центральным положением окружности является положение центральной оси инструмента.

4. Введите радиус окружности «RADIUS» («РАДИУС»)

5. Введите диаметр инструмента «TL DIA» («ДИАМЕТР ИНСТРУМЕНТА»)

Примечание: При обработке по дуге на плоскости XZ или YZ, как показано на рис. (b), когда используется концевая фреза, и рабочей точкой является точка B, диаметр инструмента не используется при обработке, поэтому необходимо задать настройку «TL DIA» («ДИАМЕТР ИНСТРУМЕНТА») = 0.

В. Дуга плавного перемещения по радиусу

(для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

6. Введите максимальный разрез «МАХ СИТ» («МАКС. РАЗРЕЗ»)

Когда данная функция используется при обработке по дуге окружности, глубина разреза каждой подачи резки является неизменной, как показано на рис. (d).

7. Введите начальный угол дуги окружности «ST ANG» («НАЧАЛЬНЫЙ УГОЛ»)

Определяется положение первой подачи резки при обработке по дуге окружности. Как показано на рис. (b), начальный угол составляет 0°, если обработка выполняется по дуге от точки E до точки F, и 90°, если по дуге от точки F до точки E.

8. Введите конечный угол дуги окружности «ED ANG» («КОНЕЧНЫЙ УГОЛ»)

Определяется положение последней подачи резки при обработке по дуге окружности. Как показано на рис. (b), конечный угол составляет 90°, если обработка выполняется по дуге от точки E до точки F, и 0°, если по дуге от точки F до точки E.

9. Определите режим обработки по внутренней/внешней окружности:

Для дуги внешней окружности, как показано на рис. (b): «RAD+TL» («РАДИУС+ ИНСТРУМЕНТ»).

Для дуги внутренней окружности, как показано на рис. (c): «RAD-TL» («РАДИУС-ИНСТРУМЕНТ»).

- 10. Переместите обрабатывающий инструмент в начальную точку обработки в соответствии с отображением для осей, затем начните обработку от точки к точке.
- 11. Чтобы деактивировать функцию расчета дуги по радиусу, просто нажмите клавишу .
- (I) *Первый пример обработки по дуге, как показано на рисунке на странице 23.
- 1) Прежде всего завершите настройку и установку инструмента и нажмите клавишу затем активируйте функцию «ARC» («ДУГА»).
- 2) Выберите функцию плавного перемещения.

(Данная настройка предусмотрена только в индикаторе 2V, индикатор 3V оснащен только функцией расчета дуги плавного перемещения по радиусу, данная настройка не предусмотрена, поэтому сразу выполняется переход к следующему действию.)

www.metalmaster.ru

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

(д	В. Дуга плавного перемещения ля режимов MILL_MS / MILL_M (многофункциональны	по радиусу й / универсальный фре	зерный станок))
8)	Введите максимальный разрез.		MAX EUT
	Нажмите клавиши 1 → [№].		
	Нажмите клавишу 💽.		
9)	Введите начальный угол дуги.	0000 🛛	SITI ANG
	Нажмите клавиши О → ы .		
	Нажмите клавишу 😥.		
10)	Введите конечный угол дуги.	9 <u>0000</u> 🛇	EB ANG
	Нажмите клавиши 🧐 → 💽 → 🕅.		
	Нажмите клавишу 🚺.		
11)	Определите режим обработки по внутренней/внешней окружности.	R A]]+ T L	
	Нажмите клавишу 🕜 или 🚱.	<i>R A]</i> - T L	
	Нажмите клавишу 🕅.		
	Нажмите клавишу 🚺.		
12)	На дисплее отображается начало обработки в первой точке.		<u> </u>
	Настройка инструмента согласно рис. (а).	65000 ®	X * Y
	Настройка инструмента согласно рис. (b).	22500 (X)	X « Y /
13)	Переместите обрабатывающий инструмент так, чтобы сбросить отображаемые значения осей X и Y на нуль и достичь исходной точки радиуса.	0000 Ø	X « Y

14) Нажмите клавишу 💮 или 💽, чтобы отобразить положение точки обработки. После этого можно переместить обрабатывающий инструмент, чтобы сбросить отображаемые значения обеих осей на нуль и достичь положения соответствующей точки радиуса на дуге окружности.

В. Дуга плавного перемещения по радиусу

(для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

(II) *Второй пример обработки по дуге, как показано на рисунке на странице 24.

- 1) Прежде всего завершите настройку и установку инструмента и нажмите клавишу затем активируйте функцию «ARC» («ДУГА»).
- 2) Выберите функцию плавного перемещения.

(Данная настройка предусмотрена только в индикаторе 2V, индикатор 3V оснащен только функцией расчета дуги плавного перемещения по радиусу, данная настройка не предусмотрена, поэтому сразу выполняется переход к следующему действию.)

- 3) Выберите плоскость обработки. Нажмите клавишу 🚯 или 🚯
- 4) Выберите плоскость XZ. Нажмите клавишу 🕅
- 5) Введите положение центра окружности.

SIMPLE
SMOOTH
SMOOTH

ARE-XY	
ARE-XZ	
ARC-YZ	
ARE-XZ	

|--|

При использовании фрезерного инструмента для обработки по дуге окружности, выполните настройку инструмента, как показано на рис. (а).

<u>32500</u> 🛛	citi pois
Ø	
- 2500 0	

При использовании фрезерного инструмента для обработки по дуге окружности, выполните настройку инструмента, как показано на рис. (b).

При использовании фрезерного инструмента с плоским торцом, выполните настройку инструмента, как показано на рис. (а).

<u>35000</u> 🗵	cit pois

(В. Дуга плавного перемещения по для режимов МП I. МS / МП I. М (многофункциональный /) радиусу универсальный фрезе	пный станок))
	Нажмите клавишу 😥.	универсальный фрезе	
	При использовании фрезерного инструмента с плоси инструмента, как показано на рис. (b).	ким торцом, выполн	ите настройку
	Нажмите клавиши: $X \to 0 \to \mathbb{W}$, $Z \to 0 \to \mathbb{W}$.		CIT POS
	Нажмите клавишу 💓.		
		(b)	
6)	Введите радиус окружности.	0000 ©	RADIUS
	Нажмите клавиши $1 \rightarrow 0 \rightarrow \mathbb{N}$,		
	Нажмите клавишу 💽.		
7)	Введите диаметр инструмента.	5000 🛇	TLIDIA
	При использовании фрезерного инструмента для обработки по дуге окружности: Нажмите клавиши 5 → [№].		
	При использовании фрезерного инструмента с		
	плоским торцом: Нажмите клавиши 0 → [₩].		
	Нажмите клавишу 🚯.	—	
8)	Введите максимальный разрез.	<i>1000</i> ©	MAX CUT
	Нажмите клавиши 🚺 → 🕅.		
	Нажмите клавишу 💽.		
9)	Введите начальный угол дуги.	Ø	STANG
	Нажмите клавиши $2 \rightarrow 7 \rightarrow 0 \rightarrow \mathbb{NI}$.		
	Нажмите клавишу 💽.		
10)	Введите конечный угол дуги.	<i>180000</i> Ø	ED ANG

Z

(д	В. Дуга плавного перемещения по ля режимов MILL_MS / MILL_M (многофункциональный /	радиусу универсальный фрезе	рный станок))
	Нажмите клавиши $1 \rightarrow 8 \rightarrow 0 \rightarrow \mathbb{H}$.		
	Нажмите клавишу 💽.		
11)	Определите режим обработки по внутренней/внешней окружности.	<i>R A</i>]]+ T L	
	Нажмите клавишу 😭 или 🚯.	RAB-TL	
	Нажмите клавишу 🕅.		RAD-TL
	Нажмите клавишу 💽.		
12)	На дисплее отображается начало обработки в первой	точке.	
	Используйте настройку фрезерного инструмента для обработки по дуге окружности согласно рис. (а).		NØ
	Используйте настройку фрезерного инструмента для обработки по дуге окружности согласно рис. (b).		
	Используйте настройку фрезерного инструмента с плоским торцом согласно рис. (а).	X	N0 /
	Используйте настройку фрезерного инструмента с плоским торцом согласно рис. (b).		NO
13)	Переместите обрабатывающий инструмент так, чтобы сбросить отображаемые значения осей X и Y на нуль и достичь исходной точки радиуса.		NOUIII
14)	Нажмите клавишу () или (), чтобы отобразить по этого можно переместить обрабатывающий отображаемые значения обеих осей на нуль и дост точки радиуса на дуге окружности.	 оложение точки обр инструмент, что ичь положения сос 	работки. После бы сбросить ответствующей

В. Дуга плавного перемещения по радиусу (для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

Примечание: Когда обрабатываемая дуга на плоскостях XZ и YZ охватывает положение 90° или 270°, например, дуга от 210° до 330° охватывает положение 270°, как на рис. (с), и дуга от 135° до 45° охватывает положение 90°, как на рис. (d), концевую фрезу использовать не следует.

(Ш)*Третий пример обработки заготовки, как показано на рисунке справа.

1. Для обработки заготовки, прежде всего необходимо рассчитать начальный и конечный углы дуги.

См. рисунок. α = Дуга cos(17,3/2)/10 ≈ 30°

Начальный угол («ST ANG») дуги составляет 30°, конечный угол («ED ANG») составляет 150°.

- 2. Сначала настройте инструмент и сбросьте шкалы диаметров отверстий осей X и Z на нуль.
- 1) Нажмите клавишу 💓, активируйте функцию «ARC» («ДУГА»).
- 2) Выберите функцию плавного перемещения.

Нажмите клавишу 🚯

Нажмите клавишу

φ5

(Данная настройка предусмотрена только в индикаторе 2V, индикатор 3V оснащен только функцией расчета дуги плавного перемещения по радиусу, данная настройка не предусмотрена, поэтому сразу выполняется переход к следующему действию)

3) Выберите плоскость обработки.

Нажмите клавишу 🕜 или 🐼.

4) Выберите плоскость XZ.

ARE-XY	
ARE-XZ	
ARC-YZ	
	_
バ ド と ・ ド と	

В. Дуга плавного перемещения по радиусу (для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок)) Нажмите клавишу (ыт) PDS 5) Введите положение центра окружности. Нажмите клавиши: 50 🖾 | EIT | PIOIS | | $\begin{array}{c} X \rightarrow 1 \rightarrow 1 \rightarrow \bigcirc \rightarrow 1 \rightarrow \bigcirc \rightarrow \blacksquare \\ \hline Z \rightarrow 1 \rightarrow 2 \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \pm \rightarrow \blacksquare \end{array}$ Нажмите клавишу 🚯 2500 Введите радиус окружности. 6) Нажмите клавиши $1 \rightarrow 0 \rightarrow \mathbb{N}$, 10000 🗵 RADIUS Нажмите клавишу 🐼. *Теперь при использовании фрезы для обработки по дуге окружности введите настройки инструмента, как показано на рис. (b). 7) Введите диаметр инструмента. Нажмите клавиши $5 \rightarrow \mathbb{W}$. 5000 🖾 TL BIA Нажмите клавишу Введите максимальный разрез. 8) Нажмите клавиши $1 \rightarrow \mathbb{N}$ 1000 🖂 MAXEUT Нажмите клавишу 🕀 9) Введите начальный угол дуги. Нажмите клавиши $1 \rightarrow 5 \rightarrow 0 \rightarrow \mathbb{N}$ 150000 🕅 ISITI ANG I Нажмите клавишу 🕀. 10) Введите конечный угол дуги. Нажмите клавиши $3 \rightarrow 0 \rightarrow \mathbb{N}$. ממממב ANG ∞ FIT Нажмите клавишу (Ф) 11) Определите режим обработки по внутренней/внешней окружности. Нажмите клавишу 🕜 или 🐼 Нажмите клавишу 🕅 Нажмите клавишу (•) 12) На дисплее отображается начало обработки в [[]]]][NO X) I первой точке. (\mathbf{Y})

www.metalmaster.ru

В. Дуга плавного перемещения по радиусу (для режимов MILL_MS / MILL_M (многофункциональный / универсальный фрезерный станок))

- 13) Начните обработку и выведите на дисплей первую точку.
- 14) Нажмите клавишу () или (), чтобы отобразить положение каждой точки обработки. После этого можно переместить обрабатывающий инструмент, чтобы сбросить отображаемые значения обеих осей на нуль и достичь каждой точки радиуса.

Функцию «ARC» («ДУГА») можно деактивировать в любой момент нажатием клавиши .

С. Простая дуга перемещения по радиусу (для режимов 2V_MILL_MS / 2V_MILL_M (2-координатный многофункциональный / универсальный фрезерный станок))

C.

Простая дуга перемещения по радиусу

(применимо для режимов 2V_MILL_MS / 2V_MILL_M (2-координатный многофункциональный / универсальный фрезерный станок))

С. Простая дуга перемещения по радиусу (для режимов 2V_MILL_MS / 2V_MILL_M (2-координатный многофункциональный / универсальный фрезерный станок))

Функция расчета простой дуги по радиусу

Оператор, не владеющий свободно концепцией системы координат на плоскости, может столкнуться с трудностями в использовании функции расчета дуги плавного перемещения. Если обрабатываемая дуга достаточно проста, и требуется средняя плавность перемещения, оптимальным выбором является функция расчета простой дуги по радиусу.

Как правило, обработка по дуге окружности осуществляется одним из восьми способов, представленных далее, с использованием концевой фрезы или фрезы для обработки по дуге окружности.

*Рабочая процедура использования функции простой дуги по радиусу

Установите переднюю грань инструмента на дуге и нажмите клавишу уклавности способа установки передней грани инструмента точно в начальной точке приводится в пункте (1) на странице 30.

1. Выберите функцию простой дуги по радиусу «SIMPLE» («ПРОСТАЯ ДУГА»).

С. Простая дуга перемещения по радиусу (для режимов 2V_MILL_MS / 2V_MILL_M (2-координатный многофункциональный / универсальный фрезерный станок))

- 2. Выберите способ обработки из предварительных настроек 1 8, подсказка: «WHICH» («КАКОЙ»).
- 3. Выберите плоскость обработки XY, XZ или YZ. «ARC-XY» («ДУГА НА ПЛОСКОСТИ XY») «ARC-XZ» («ДУГА НА ПЛОСКОСТИ XZ») «ARC-YZ» («ДУГА НА ПЛОСКОСТИ YZ»)
- 4. Введите радиус окружности «RADIUS» («РАДИУС»)
- 5. Введите диаметр инструмента «TL DIA» («ДИАМЕТР ИНСТРУМЕНТА»). При обработке по дуге на плоскости XZ или YZ используется концевая фреза, и обработка осуществляется по концевой кромке инструмента, поэтому задаваемое значение диаметра должно быть равно нулю (см. действие 5 в описании рабочей процедуры использования функции расчета дуги плавного перемещения по радиусу).
- 6. Введите максимальный разрез «МАХ СUТ» («МАКС. РАЗРЕЗ»).

При обработке по дуге на плоскостях XZ и YZ настройка «MAX CUT» («MAKC. PA3PE3») для функции расчета простой дуги по радиусу определяется как глубина резки при каждой подаче в направлении оси Z (см. рисунок а). Максимальный разрез можно изменять во время обработки.

При обработке по дуге на плоскости ХУ

Рисунок (а)

Рисунок (b)

настройка «MAX CUT» («МАКС. РАЗРЕЗ») представляет собой глубину резки при каждой подаче и является неизменной (см. рис. b).

- 7. Выполните обработку от точки к точке в соответствии с индикацией.
- 8. Функцию расчета дуги по радиусу можно деактивировать в любой момент нажатием клавиши .

*Пример обработки по дуге прямого угла

 Прежде всего установите переднюю грань инструмента точно в начальной точке дуги (в точке А или в точке В) и нажмите клавишу , чтобы активировать функцию «ARC» («ДУГА»).

Выберите функции простой дуги нажатием клавиши [N].

2) Выберите режим обработки дуги по радиусу.

Начальная точка А – нажмите клавиши 🗿 –

С. Простая дуга перемещения по радиусу (для режимов 2V_MILL_MS / 2V_MILL_M (2-координатный многофункциональный / универсальный фрезерный станок))

ENT

Конечная точка В – нажмите клавиши (4

L = R

L = K + Paduyc инструмент

L = R

L = R + Pадиус инструмента

L1 = R L2 = Радиус инструмента

L1 = Радиус инструмента L2 = R

L = R + Радиус инструмента

L1 = R L2 = Радиус инструмента

L1 = Pадиус инструментаL2 = R

L = R

Общество с ограниченной ответственностью «МеталМастер» 115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7

тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

	С. Простая дуга перемещен (2-координатный многоф	ия по радиусу (для реж ункциональный / унив	имов 2V_MILL_MS / 2V_ ерсальный фрезерный ст	MILL_M Tahok))
	Концевая фреза	Фреза для обработ	гки Плоси	кость ХҮ
		по дуге окружнос	ТИ	
3)	Выберите плоскость обрабо	гки.		
	Нажмите клавишу 🟠 или	₽ .	ARE-XZ	
			ARE-YZ	
4)	Выберите плоскость XZ.			
,			ARE-XZ	
	пажмите клавишу 🕎.			
5)	Введите радиус дуги окружн	юсти.	RADIUS	
	Нажмите клавиши $1 \rightarrow 0$	\rightarrow \blacksquare .	<i>10000</i> 🗵	RADIUS
	Нажмите клавишу 🐼.			
6)	Введите радиус инструмента	a.		TLBIA
	Нажмите клавиши 🔘 → 🗈	D.		
	Нажмите клавишу 💽.			
7)	Введите максимальный разр	e3.		MAX EUT
	Нажмите клавиши $\bigcirc \rightarrow \bigcirc$	\rightarrow \rightarrow \rightarrow $\boxed{\mathbb{N}}$.		
	Нажмите клавишу 🚯.			
8)	Начните обработку.			+ 0000
	Нажмите клавишу 💽.			
	Точка А является начальной	точкой (0, 0).		X * Z 2
	Нажмите клавишу 💽.			
	Точка В является начальной	точкой (0, 0).	- 00 10 🛛	X * Z 2
	Нажмите клавишу 💽.			
	~ -			_

- 9) См. отображаемые значения, переместите обрабатывающий инструмент, чтобы сбросить отображаемое значение оси X на нуль, затем поверните маховик оси Z, чтобы поднять или опустить рабочий стол станка в соответствии с отображаемым значением оси Y.
- 10) Нажмите клавишу () или (), после чего на дисплее появится следующая/последняя точка. Функцию «ARC» («ДУГА») можно деактивировать в любой момент нажатием клавиши).

С. Простая дуга перемещения по радиусу (для режимов 2V_MILL_MS / 2V_MILL_M (2-координатный многофункциональный / универсальный фрезерный станок)) *Пример обработки по внутренней дуге окружности: 1) Прежде всего установите переднюю грань инструмента точно в начальной точке дуги (в точке А или в точке В) и нажмите клавишу 😥, чтобы активировать функцию «ARC» («ДУГА»). Выберите функцию простой дуги нажатием TMPIF клавиши (ы) 2) Выберите режим обработки дуги по радиусу. WHIEH Начальная точка A – нажмите клавиши $(6) \rightarrow [m]$ Конечная точка В – нажмите клавиши **5** → 3) Выберите плоскость обработки. Нажмите клавишу 🕥 или 🐼. 4) Выберите плоскость XZ. Нажмите клавишу [11]. Введите радиус дуги окружности. 5) Нажмите клавиши $1 \rightarrow 0 \rightarrow \mathbb{N}$ \boxtimes RADIUS חחחר Нажмите клавишу 🚯 \odot Введите диаметр инструмента. 6) TLDIA Нажмите клавиши $5 \rightarrow \mathbb{W}$. \odot Нажмите клавишу 🕀. Введите максимальный разрез. 7) MAXEUT 0500 M Нажмите клавиши $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$ Нажмите клавишу 🕀. Активируйте режим обработки. + 0000 8) 0000 (\mathbf{x}) Нажмите клавишу 🚯 0000 \odot Точка А является начальной точкой (0, 0). XZZ 2690 ∞ ק

0500 🖸

С. Простая дуга перемещения по радиусу (для режимов 2V_MILL_MS / 2V_MILL_M (2-координатный многофункциональный / универсальный фрезерный станок))

Нажмите клавишу 🚯

Точка А является начальной точкой (0, 0).

Нажмите	клавишу	₽
---------	---------	---

- | 0.500 Ø

- 9) См. отображаемые значения, переместите обрабатывающий инструмент, чтобы сбросить отображаемое значение оси X на нуль, затем поверните маховик оси Z, чтобы поднять или опустить рабочий стол станка в соответствии с отображаемым значением оси Y.
- 10) Нажмите клавишу 💮 или 💽, после чего на дисплее появится следующая/последняя точка. Функцию «ARC» («ДУГА») можно деактивировать в любой момент нажатием клавиши 🕅.
 - Примечание: После перехода в режим обработки в окне сообщений поочередно отображается точка обработки и суммарное значение в направлении оси Z.

*Изменение максимального разреза

При обработке по дуге на плоскости XZ и YZ настройка «MAX CUT» («МАКС. РАЗРЕЗ») обозначает глубину резки по оси Z. Если глубина резки по оси Z неизменна, качество обрабатываемой дуги будет очень неравномерным. Для повышения качества поверхности при обработке по дуге окружности на плоскости XZ и YZ оператор может изменять максимальный разрез во время обработки для достижения равномерного качества поверхности. При обработке по дуге на плоскости XY настройка «MAX CUT» («MAKC. PA3PE3») представляет собой разрез при каждой подаче резки. Поскольку разрез при каждой подаче резки является неизменным, это обеспечивает контроль качества поверхности обрабатываемой дуги, и функция изменения максимального разреза не используется при обработке по дуге на плоскости XY.

Для изменения максимального разреза оператор может выполнить следующие действия.

1)	Измените максимальный разрез в режиме обработки.	
	Нажмите клавишу 🕼.	первоначальная настройка
2)	Введите значение изменения максимального разреза, например, «0,5». Нажмите клавиши $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$	0500 © Max Cut
3)	Вернитесь в режим обработки. Продолжите обработку. Нажмите клавишу [2].	000 X X Z

D. Высверливание отверстий вдоль наклонной (применимо для режима MILL_MS (многофункциональный фрезерный станок))

D.

Высверливание отверстий вдоль наклонной линии

(применимо для режима MILL_MS (многофункциональный фрезерный станок))

D. Высверливание отверстий вдоль наклонной (применимо для режима MILL_MS (многофункциональный фрезерный станок))

Функция высверливания отверстий вдоль наклонной линии

Как правило, для обработки заготовок, как показано на рисунке справа, оператор должен рассчитать расстояние между двумя соседними отверстиями на осях X и Y. Простым и быстрым решением является функция высверливания отверстий вдоль наклонной.

От оператора требуется только ввод следующих данных:

Длина наклонной линии «LENGTH» («ДЛИНА»)

Это фактическое расстояние от центра начальной точки до центра последней точки. Данное значение вводится после выбора режима «MODE L» («РЕЖИМ ДЛИНЫ»).

Длина шага «STEP» («ШАГ»)

Это расстояние между двумя соседними отверстиями. Данное значение вводится после выбора режима «MODE S» («РЕЖИМ ДЛИНЫ ШАГА»).

Угол «ANGLE» («УГОЛ»)

Это направление наклонной линии на плоскости координат. На рис. (а) угол составляет 30° , то есть, следует ввести угол на плоскости 30; на рис. (b) угол составляет -30° , то есть следует ввести угол на плоскости -30.

Количество отверстий «NUMBER» («КОЛ-ВО»)

Пример обработки согласно рис. (а).

1) Прежде всего переместите инструмент в положение начального отверстия А.

Нажмите клавишу 🎑, чтобы активировать функцию.

2) Выберите плоскость обработки.

Нажмите клавиши 🕜 или 🐼.

Выберите плоскость обработки и нажмите клавишу 🕅

(Данная настройка предусмотрена только в индикаторе 3V, индикатор 2V оснащен только опцией плоскости XY, то есть выбор плоскости обработки не требуется, можно сразу переходить к следующему действию.)

 Выберите режим. Нажмите клавиши () или ().

> Выберите «MODE L» («РЕЖИМ ДЛИНЫ»). Нажмите клавишу [М].

MODE	L
MOJE	5
MOJE	L

(a)

(b)

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

D. Высверливание отверстий вдоль наклонной				
4)	Введите длину наклонной линии.			
	Нажмите клавиши $6 \rightarrow 0 \rightarrow \mathbb{N}$			
	Нажмите клавишу 💽.			
5)	Введите угол.		\times	ANGLE
	Нажмите клавиши $(3) \rightarrow (0) \rightarrow (\mathbb{N})$.			
	Нажмите клавишу 🚯.			
6)	Введите количество отверстий.	4	\boxtimes	NUMBER
	Нажмите клавиши (4) → [т].	A.57		
	Нажмите клавишу 💽.			
7)	Отображается положение первого отверстия,		\boxtimes	NID /
	после этого активируите режим обработки.		\odot	
8)	Нажмите клавишу 💽, чтобы вывести на	_		
	дисплей положение следующей точки обработки, инструмент, чтобы сбросить отображаемые значе	затем перемести ния осей X и Y н	ите об на нул	брабатывающий пь.
	Функцию можно деактивировать в любой момент	нажатием клави	иши 🕻	Z).
Для («Р Дал	я обработки заготовки согласно рис. (a) целесос ЕЖИМ ДЛИНЫ»). тее приводится пример обработки заготов	образно выбрать вки согласно	ь реж рис	хим «MODE L» . (b), чтобы
прс	одемонстрировать процедуру с выбором режима «М	ЛОDE S» («РЕЖ	ИMI	ШАГА»).
1)	Прежде всего переместите инструмент в положен	ие начального о	гверс	тия А.
	Нажмите клавишу 🙋, чтобы активировать функ	цию.		
2)	Выберите плоскость обработки.		Y	
	Нажмите клавиши 😭 или 🚯.			
	Выберите плоскость обработки и нажмите клавиш	IIY ENT.		
	(Данная настройка предусмотрена только в инд только опцией плоскости ХҮ, то есть, выбор можно сразу переходить к следующему действию	икаторе 3V, ин, плоскости обра .)	цикат боткі	тор 2V оснащен и не требуется,
3)	Выберите режим. Нажмите клавиши 😭 или 🚯.			
	Выберите «MODE S» («РЕЖИМ ШАГА»).	כ שעטח		
	• • • • • • • •	MOJEIS		

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

	D. Высверливание отверстий вдоль наклонной (применимо для режима MILL_MS (многофункциональный фрезерный станок))			
	Нажмите клавишу 🕅.			
4)	Введите длину шага.	20000 🗵	STEP	
	Нажмите клавиши $2 \rightarrow 0 \rightarrow \mathbb{E}$			
	Нажмите клавишу 🚯.			
5)	Введите угол.		ANGLE	
	Нажмите клавиши $3 \rightarrow 0 \rightarrow \mathbb{N}$.			
	Нажмите клавишу 🚯.			
6)	Введите количество отверстий.		NUMBER	
	Нажмите клавиши [4] → [₺1].			
	Нажмите клавишу 🚯.			
7)	Активируйте режим обработки.		NØ	
8)	Нажмите клавишу 🚯, чтобы вывести на			
	дисплей положение следующей точки обработки, затем переместите обрабатывающий инструмент, чтобы сбросить отображаемые значения осей X и Y на нуль.			

Функцию можно деактивировать в любой момент нажатием клавиши 🎑.

Е₁. Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))

\mathbf{E}_1

Функция 200 дополнительных нулевых положений

(применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок и электроискровой станок))

E₁. Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))

Функция 200 дополнительных нулевых положений

Функция 200 дополнительных нулевых положений называется также функцией 200 пользовательских систем координат «UCS».

ALE: Абсолютная система координат.

Абсолютная система координат «ALE» является базовой системой. Все 200 пользовательских систем координат определяются относительно абсолютной системы координат. Абсолютная система координат подтверждается при инициализации процесса обработки заготовки и не изменяется, пока не производится замена заготовки.

UCS: Пользовательская система координат.

При обработке литых заготовок часто требуется более одного исходного нулевого положения, как правило, необходимо назначение множества дополнительных нулевых положений. При высверливании/фрезеровании больших партий сложных соединительных деталей с многоточечными размерами требуется также множество фиксированных положений для выполнения обработки нескольких конструкций с размерами относительно данных положений. В таких случаях, при использовании только одной исходной точки эффективность обработки снижается, поскольку необходимо определять правильные положения от точки к точке, более того, обработка сложных литых заготовок или формовочных соединительных деталей может представлять трудности. Функция 200 дополнительных нулевых положений предусмотрена специально для оптимального решения такой проблемы.

I. Перед использованием данной функции оператор должен ознакомиться со следующими двумя основными правилами:

- 1. Каждое дополнительное нулевое положение является эквивалентом начальной точки одной пользовательской системы координат. После перехода в режим индикации этой пользовательской системы координат для каждой точки отображается дополнительное нулевое положение в качестве начальной точки.
- 2. Между каждым дополнительным нулевым положением и нулевыми координатами, заданными в абсолютном режиме, существует взаимосвязь. После настройки дополнительного нулевого положения взаимосвязь между ним и нулевыми координатами, заданными в абсолютном режиме, сохраняется в памяти. При изменении нулевых координат в абсолютном режиме дополнительное нулевое положение также изменяется на основе идентичного расстояния и угла.

II. Оператор может использовать данную функцию в полном объеме следующим образом:

1. Задайте нулевые координаты в абсолютном режиме (горит индикатор «ALE» («Абсолютная система координат»)) в основной исходной точке заготовки, например, в точке О на рис. (1) на следующей странице. Задайте дополнительные нулевые положения в дополнительных исходных точках заготовки, например, в точках 1, 2 и 3 на рис. (1). Режим индикации каждой пользовательской системы координат можно

E1. Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))

активировать путем назначения дополнительного нулевого положения в качестве ее начальных координат для выполнения обработки, когда это необходимо.

2. В режиме индикации каждой пользовательской системы можно выполнять обработку с использованием различных специальных функций.

Ш. Настройка дополнительных нулевых положений

Существует два способа настройки дополнительных нулевых положений: первый – ввод дополнительного нулевого положения напрямую, второй – сброс и настройка по достижении дополнительного нулевого положения.

Способ 1: Ввод напрямую в режиме индикации пользовательской системы координат. Нажмите клавиши (Х (У (Z) → Цифровые клавиши →).

См. пример на рис. (1): После включения станка переместите обрабатывающий инструмент в центральную точку О на рис. (1) и активируйте режим абсолютной индикации.

Сбросьте настройки, задайте в качестве нулевых координат в абсолютном режиме основную исходную точку заготовки.

ØØØØ 🛛	ALE

1) После настройки нулевых координат в абсолютном режиме система автоматически выполняет операцию сохранения в память, чтобы обеспечить возможность восстановления нулевых координат в случае сбоя питания.

2)

Общество с ограниченной ответственностью «МеталМастер» 115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

 І. Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))

 Активируйте режим индикации пользовательской системы координат (два способа).

 Способ 1:

 Нажмите клавишу
 .

 .
 .

 Нажмите клавишу
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .

3) Введите координаты первого дополнительного нулевого положения.

$X \rightarrow \pm$	\rightarrow \bigcirc \rightarrow	\rightarrow \bigcirc \rightarrow	ENT
$() \rightarrow (\pm)$	\rightarrow $\boxed{8}$ \rightarrow	\rightarrow \bigcirc \rightarrow	ENT

ZER

1

2

E

4) Активируйте индикацию второй пользовательской системы координат.

Нажмите клавишу 🕜 или . Нажмите клавиши 2 → .

ZIEIF	?	2

5) Введите координаты второго дополнительного нулевого положения.

\otimes	→⑦-	→0 -	\rightarrow ENT	
9	→ (±) -	→4-	→0-	→ ENT

<u>- 70000</u> (X)	ZIEIF
40000 🛇	

6) Активируйте режим индикации третьей пользовательской системы координат.

Нажмите клави	шу 🕜 или 🕮
Нажмите клави	ши 🕄 → 🕅.

76	
	السا

7) Введите координаты третьего дополнительного нулевого положения.

Нажмите клавиши:

- 60000 🛛	ZER
- 40000 🛇	

Настройка всех дополнительных нулевых положений для заготовки согласно рис. (1) завершена.

E₁. Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))

Почему заданные значения координат каждого дополнительного нулевого положения противоположными отображаемым значениям? Лалее являются приводится объяснение на основе вышеописанного примера. В режиме пользовательской системы координат, когда координаты дополнительного нулевого положения вводятся как нулевые координаты в абсолютном режиме, отображаются нулевые координаты в абсолютном режиме в соответствующей пользовательской системе координат. Причина заключается в том, что дополнительное нулевое положение принимается в качестве начальной точки пользовательской системы координат в режиме относительной индикации. На рис. (1) показано, что точка О находится в положении с координатами (-80, -30) относительно точки 1, (-70, -40) относительно точки 2 и (-60, -40) относительно точки 3. Если оператор вводит координаты дополнительного нулевого положения, помимо нулевых координат В абсолютном режиме, отображается положение относительно дополнительного нулевого положения в соответствующей пользовательской системе координат. Например, когда координаты третьего дополнительного нулевого положения назначаются в точке Е, отображаются координаты (-50, -30).

Способ 2: Сброс при достижении положения. Когда обрабатывающий инструмент установлен в требуемое дополнительное нулевое положение, нажмите клавиши:

См. пример обработки заготовки на рис. (1): Переместите рабочий стол станка в центральную точку О на рис. (1).

1)	Активируйте режим абсолютной индикации, сбросьте настройки, задайте в качестве нулевых координат в абсолютном режиме основную исходную точку.		
2)	Переместите рабочий стол обрабатывающего инструмента в точку 1.	- 80000 ®	ALE
	Отображаемое значение для оси Х: -80.		
	Отображаемое значение для оси Ү: –30.		
3)	Активируйте режим индикации первой пользовательской системы координат.	- 80000 🖾	
	Нажмите клавишу 🔂 или 🖾.	<u>- 30000</u> Ø	
	Нажмите клавиши $1 \rightarrow \mathbb{ENT}$.		
4)	Задайте дополнительное нулевое положение.		ZER
	Нажмите клавиши $X \rightarrow G$		
	$(Y) \to \mathbb{CLS}.$		

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

	Е ₁ . Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))		
5)	Вернитесь в режим абсолютной индикации.	<u>- 80800</u> 🛛 ALE	
	Нажмите клавишу 🚯.		
6)	Переместите рабочий стол обрабатывающего инструмента в точку 2.		
	Отображаемое значение для оси Х: 70.	<u>-</u> 40000 🖾	
	Отображаемое значение для оси Ү: –40.		
7)	Активируйте режим индикации второй пользовательской системы координат.	70000 🖾 ZER 12	
		<u>- 40880</u> X	
8)	Сбросьте настройки, задайте второе	0000 © ZER 2	
	Нажмите клавиши $X \rightarrow GLS$.		
	$(\Upsilon) \to \mathbb{GLS}.$		
9)	Вернитесь в режим абсолютной индикации.	10000 🖾 //LE	
	Затем три раза нажмите клавишу 📢.	40000 Ø	
10)	Переместите рабочий стол обрабатывающего инструмента в точку 3.		
	Отображаемое значение для оси Х: 60.		
	Отображаемое значение для оси У: 40.		
11)	Активируйте режим индикации третьей пользовательской системы координат.]
	Нажмите клавищи 🕬 → 🕄 → 🕅		
12)	Сбросьте настройки, задайте третье дополнительное нулевое положение.	0000 (2) ZER3	
	$(\mathbf{Y}) \to \mathbb{GLS}.$		
13)	Вернитесь в режим абсолютной индикации.	60000 © ALE	
	Затем четыре раза нажмите клавишу 🚺.		
Hac	тройка всех дополнительных нулевых		

E₁. Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))

положений заготовки согласно рис. (1) завершена.

IV. Использование дополнительных нулевых положений

После активации режима индикации пользовательской системы координат соответствующие дополнительные нулевые положения можно использовать при обработке.

Режим индикации пользовательской системы координат можно активировать нажатием клавиши (), () или клавиши .

Если используются клавиши 🕢 и 💽, многократно нажимайте клавиши 🚱 и 💽 до отображения нужной пользовательской системы координат.

Если используются клавиши , нажмите клавишу и после отображения подсказки «ZERO No» («НУЛЕВОЕ ПОЛОЖЕНИЕ №») введите номер нужной пользовательской системы координат. Описание соответствующих процедур приводится в пункте 5 «Режим абсолютной/относительной индикации/индикации пользовательских систем координат» под пунктом I «Применение» в разделе «Базовые функции».

Далее приводится пример обработки заготовки согласно рис. (1).

1) Активируйте режим индикации первой пользовательской системы координат.

	Нажмите клавишу 🖽.	ZERO NO	
2)	Введите номер		ZER
	Нажмите клавиши 🚺 → 🕅.		
3)	Переместите обрабатывающий инструмент в точку А.		ZER
	Отображаемое значение для оси Х: 0.		
	Отображаемое значение для оси Ү: 15.		
4)	Выполните обработку отверстия А.		
5)	Активируйте режим индикации второй	<u>- </u>	ZERIZ
	нажмите клавишу 😈.		
6)	Переместите обрабатывающий инструмент в точку В.		ZIEIRI I I IZ
	Отображаемое значение для оси Х: –15.		
	45		

E₁. Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))

Отображаемое значение для оси У: 0.

- 7) Выполните обработку отверстия В.
- 8) Переместите обрабатывающий инструмент в точку С.
 Отображаемое значение для оси Х: 0.
 Отображаемое значение для оси Y: 20.
- 9) Выполните обработку отверстия С.
- 10) Активируйте режим индикации третьей пользовательской системы координат.

Нажмите клавишу 🕜

11) Переместите обрабатывающий инструмент в точку 3.

Отображаемое значение для оси X: 0.

Отображаемое значение для оси У: 0.

12) Активируйте функцию «РСD» («РАСПРЕДЕЛЕНИЕ ПО ОКРУЖНОСТИ»), обработайте шесть небольших отверстий, расположенных через равные интервалы на окружности с центром в точке 3.

Нажмите клавишу 🛞.

 Обработка шести небольших отверстий завершена, вернитесь в точку D, на дисплее должны отображаться следующие данные:

ă e	20000 ©	ZER
Ŧ		

0000 🗵

0000

מממם

пппп

nne

 (\mathbf{X})

 (\mathbb{Z})

ZER

ZER 3

F

Описание функции «РСD» («РАСПРЕДЕЛЕНИЕ ПО ОКРУЖНОСТИ») см. в соответствующих разделах.

V. Удаление дополнительных нулевых положений и связанные с этим проблемы

1. Удаление дополнительных нулевых положений

В абсолютном режиме (режим «ALE» («Абсолютная система координат»)) 10 раз последовательно нажмите клавишу , при этом все сохраненные в памяти дополнительные нулевые положения удаляются, в качестве 200 дополнительных нулевых положений назначается одинаковые нулевые координаты, заданные в абсолютном режиме.

Е₁. Функция 200 нулевых положений (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок / электроискровой станок))

2. Сброс во время использования дополнительного нулевого положения

Дополнительное нулевое положение используется в режиме индикации соответствующей пользовательской системы координат, при сбросе в этом режиме фактически устанавливается новое дополнительное нулевое положение. Точка, в которой выполняется процедура сброса, становится новым дополнительным нулевым положением, и новое дополнительное нулевое положение заменяет первоначальное дополнительное нулевое положение.

3. Переключение на среднюю точку во время использования дополнительного нулевого положения

Функция «1/2» («СРЕДНЯЯ ТОЧКА») может использоваться в режиме индикации пользовательской системы координат. При переключении на среднюю точку в режиме инликации пользовательской системы координат во время использования дополнительного нулевого положения фактически устанавливается новое дополнительное нулевое положение. После выполнения операции переключения на среднюю точку первоначальное дополнительное нулевое положение заменяется новым дополнительным нулевым положением в центре между первоначальным дополнительным нулевым положением и точкой, в которой выполнена операция переключения на среднюю точку.

Е₂. Функция 200 нулевых положений (применимо для режима LATHE (токарный станок))

\mathbf{E}_2

Функция 200 дополнительных нулевых положений

(применимо для режима LATHE (токарный станок))

Е₂. Функция 200 нулевых положений (применимо для режима LATHE (токарный станок))

Функция 200 дополнительных нулевых положений

Функция 200 дополнительных нулевых положений называется также функцией 200 пользовательских систем координат «UCS».

ALE: Абсолютная система координат.

Абсолютная система координат «ALE» является базовой системой. Все 200 пользовательских систем координат определяются относительно абсолютной системы координат. Абсолютная система координат подтверждается при инициализации процесса обработки заготовки и не изменяется, пока не производится замена заготовки.

UCS: Пользовательская система координат.

При обработке литых заготовок часто требуется более одного исходного нулевого положения, как правило, необходимо назначение множества дополнительных нулевых положений. При высверливании/фрезеровании больших или средних партий сложных соединительных деталей с многоточечными размерами требуется также множество фиксированных положений для выполнения обработки нескольких конструкций с размерами относительно данных положений. В таких случаях, при использовании только одной исходной точки эффективность обработки снижается, поскольку необходимо определять правильные положения от точки к точке, более того, обработка сложных литых заготовок или формовочных соединительных деталей может представлять трудности. Функция 200 дополнительных нулевых положений предусмотрена специально для оптимального решения такой проблемы.

I. Перед использованием данной функции оператор должен ознакомиться со следующими двумя основными правилами:

- 1. Каждое дополнительное нулевое положение является эквивалентом начальной точки одной пользовательской системы координат. После перехода в режим индикации этой пользовательской системы координат для каждой точки отображается дополнительное нулевое положение в качестве начальной точки.
- 2. Между каждым дополнительным нулевым положением и нулевыми координатами, заданными в абсолютном режиме, существует взаимосвязь. После настройки дополнительного нулевого положения взаимосвязь между ним и нулевыми координатами, заданными в абсолютном режиме, сохраняется в памяти. При изменении нулевых координат в абсолютном режиме дополнительное нулевое положение также изменяется на основе идентичного расстояния и угла.

II. Оператор может использовать данную функцию в полном объеме следующим образом:

1. Задайте нулевые координаты в абсолютном режиме (горит индикатор «ALE» («Абсолютная система координат»)) в основной исходной точке заготовки, например, в точке О на рис. (1) на следующей странице. Задайте дополнительные нулевые положения в дополнительных исходных точках заготовки, например, в точках 1, 2 и 3 на рис. (1). Режим индикации каждой пользовательской системы координат можно

Е₂. Функция 200 нулевых положений

(применимо для режима LATHE (токарный станок))

активировать путем назначения дополнительного нулевого положения в качестве ее начальных координат для выполнения обработки, когда это необходимо.

2. В режиме индикации каждой пользовательской системы можно выполнять обработку с использованием различных специальных функций.

Ш. Настройка дополнительных нулевых положений

Существует два способа настройки дополнительных нулевых положений: первый – ввод дополнительного нулевого положения напрямую, второй – сброс и настройка по достижении дополнительного нулевого положения.

Способ 1: Ввод напрямую в режиме индикации пользовательской системы координат. Нажмите клавиши 🗙 🏹 📿 → Цифровые клавиши → 🖽.

См. пример на рис. (1): После включения станка переместите обрабатывающий инструмент в центральную точку О на рис. (1) и активируйте режим абсолютной индикации.

Далее в качестве примера используется ось Ү.

Сбросьте настройки, задайте в качестве нулевых координат в абсолютном режиме основную исходную точку заготовки.

0000 🕲	

- 1) После настройки нулевых координат в абсолютном режиме система автоматически выполняет операцию сохранения в памяти, чтобы обеспечить возможность восстановления нулевых координат в случае сбоя питания.
- Активируйте режим индикации пользовательской системы координат (два способа). Способ 1:

INE		
ZER		1

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

Настройка всех дополнительных нулевых положений для заготовки согласно рис. (1) завершена.

Почему заданные значения координат каждого дополнительного нулевого положения являются противоположными отображаемым значениям? Далее приводится объяснение на основе выше описанного примера. В режиме пользовательской системы координат, когда координаты дополнительного нулевого положения вводятся как нулевые координаты в абсолютном режиме, отображаются нулевые координаты в абсолютном режиме, отображаются нулевые координаты в абсолютном режиме. Причина заключается в том, что в режиме индикации пользовательской

Е₂. Функция 200 нулевых положений (применимо для режима LATHE (токарный станок))

системы координат каждое дополнительное нулевое положение используется в качестве начальной точки пользовательской системы координат. На рис. (1) показано, что точка О находится в положении точки 1 с координатами (-20, 70) относительно точки 1, (-30, 120) относительно точки 2 и (-20, 130) относительно точки 3. Если оператор вводит координаты дополнительного нулевого положения, помимо нулевых координат в абсолютном режиме в какой-либо другой точке, кроме точки с нулевыми координатами в абсолютном режиме, отображается положение данной точки в данной пользовательской системе координат.

Способ 2: Сброс при достижении положения. Когда обрабатывающий инструмент установлен в требуемое дополнительное нулевое положение, нажмите клавиши:

Способ 2 не применим для токарных станков. Подробные инструкции по эксплуатации прибора с токарными станками не включены в настоящее руководство.

IV. Использование дополнительных нулевых положений

После активации режима индикации пользовательской системы координат соответствующие дополнительные нулевые положения можно использовать при обработке.

Режим индикации пользовательской системы координат можно активировать нажатием клавиши (), () или клавиши ().

Если используются клавиши 🕢 и 🐼, многократно нажимайте клавиши 🚱 и 🐼 до отображения нужной пользовательской системы координат.

Если используются клавиши тодсказки «ZERO No» («НУЛЕВОЕ ПОЛОЖЕНИЕ №») введите номер нужной пользовательской системы координат. Описание соответствующих процедур приводится в пункте 5 «Режим абсолютной/относительной индикации/индикации пользовательских систем координат» под пунктом I «Применение» в разделе «Базовые функции».

Далее приводится пример обработки заготовки согласно рис. (2). Оператор может использовать функцию 200 дополнительных нулевых положений для шлифования и обточки.

E₂. Функция 200 нулевых положений (применимо для режима LATHE (токарный станок))

Рисунок (2)

Выполняется черновая обточка заготовки с последующей частичной тонкой обточкой.

Односторонний допуск на грубую обточку составляет 0,05, тонкая обточка поверхности заготовки должна соответствовать требованиям к шероховатости.

Сначала в качестве абсолютной начальной координаты назначьте точку А, затем напрямую введите координаты дополнительного нулевого положения в соответствии со способом 1 настройки дополнительного нулевого положения для пользовательской системы координат. Сначала мы задали первое дополнительное нулевое положение с координатами (10, -40), второе – с координатами (20,05, -70) и третье – с координатами (30,05, -120).

1) После проверки режущего инструмента активируйте первую пользовательскую систему координат.

ZERO

NП

30000 🕅

 \square

10050 🖾 | ZER |

ZRE

🖾 🗆 ZERI

Нажмите клавишу 🕮.

 Введите номер. Нажмите клавиши 1 → [№].

3)) Обработайте окружность Ø20.					
	Начните	И	продолжайте	резку	до	сброса
	отобража	емы	х значений осей	й ХиҮ	на ну	ль.

4) Активируйте вторую пользовательскую систему координат.

Нажмите	клавишу	(1)
---------	---------	-----

- Обработайте окружность Ø40. Начните и продолжайте резку до сброса отображаемых значений осей X и Y на нуль.
- Активируйте третью пользовательскую систему координат.

Нажмите клавишу	$\hat{\mathbf{L}}$
-----------------	--------------------

- Обработайте окружность Ø60.
 Начните и продолжайте резку до сброса отображаемых значений осей X и Y на нуль.
- Вернитесь в абсолютный режим. Нажимайте клавишу (Д) до отображения «ALE» («Абсолютная система координат»)

 Image: state stat

9) Разверните заготовку второй стороной для обточки другой части окружности Ø40.

Е₂. Функция 200 нулевых положений (применимо для режима LATHE (токарный станок))

V. Удаление дополнительных нулевых положений и связанные с этим проблемы

1. Удаление дополнительных нулевых положений

В абсолютном режиме (режим «ALE» («Абсолютная система координат»)) 10 раз последовательно нажмите клавишу , при этом все сохраненные в памяти дополнительные нулевые положения удаляются, в качестве 200 дополнительных нулевых положений назначается одинаковые нулевые координаты, заданные в абсолютном режиме.

2. Сброс во время использования дополнительного нулевого положения

Дополнительное нулевое положение используется в режиме индикации соответствующей пользовательской системы координат, при сбросе в этом режиме фактически устанавливается новое дополнительное нулевое положение. Точка, в которой выполняется процедура сброса, становится новым дополнительным нулевым положением, и новое дополнительное нулевое положение заменяет первоначальное дополнительное нулевое положение.

3. Переключение на среднюю точку во время использования дополнительного нулевого положения

Функция «1/2» («СРЕДНЯЯ ТОЧКА») может использоваться в режиме индикации пользовательской системы координат. При переключении на среднюю точку в режиме индикации пользовательской системы координат во время использования дополнительного нулевого положения фактически устанавливается новое дополнительное нулевое положение. После выполнения операции переключения на среднюю точку первоначальное дополнительное нулевое положение заменяется новым дополнительным нулевым положением в центре между первоначальным дополнительным нулевым положением и точкой, в которой выполнена операция переключения на среднюю точку.

Е₃. Функция 200 нулевых положений (применимо для режима 2V_GRIND (2-координатный шлифовальный станок))

E_3

Функция 200 дополнительных нулевых положений

(применимо для режима 2V_GRIND (2-координатный шлифовальный станок))

Е3. Функция 200 нулевых положений

(применимо для режима 2V_GRIND (2-координатный шлифовальный станок))

Функция 200 дополнительных нулевых положений

Функция 200 дополнительных нулевых положений называется также функцией 200 пользовательских систем координат «UCS».

ALE: Абсолютная система координат.

Абсолютная система координат «ALE» является базовой системой. Все 200 пользовательских систем координат определяются относительно абсолютной системы координат. Абсолютная система координат подтверждается при инициализации процесса обработки заготовки и не изменяется, пока не производится замена заготовки.

UCS: Пользовательская система координат.

При обработке литых заготовок часто требуется более одного исходного нулевого положения, как правило, необходимо назначение множества дополнительных нулевых положений. При высверливании/фрезеровании больших партий сложных соединительных деталей с многоточечными размерами требуется также множество фиксированных положений для выполнения обработки нескольких конструкций с размерами относительно данных положений. В таких случаях, при использовании только одной исходной точки эффективность обработки снижается, поскольку необходимо определять правильные положения от точки к точке, более того, обработка сложных литых заготовок или формовочных соединительных деталей может представлять трудности. Функция 200 дополнительных нулевых положений предусмотрена специально для оптимального решения такой проблемы.

I. Перед использованием данной функции оператор должен ознакомиться со следующими двумя основными правилами:

- 1. Каждое дополнительное нулевое положение является эквивалентом начальной точки одной пользовательской системы координат. После перехода в режим индикации этой пользовательской системы координат для каждой точки отображается дополнительное нулевое положение в качестве начальной точки.
- 2. Между каждым дополнительным нулевым положением и нулевыми координатами, заданными в абсолютном режиме, существует взаимосвязь. После настройки дополнительного нулевого положения взаимосвязь между ним и нулевыми координатами, заданными в абсолютном режиме, сохраняется в памяти. При изменении нулевых координат в абсолютном режиме дополнительное нулевое положение также изменяется на основе идентичного расстояния и угла.

II. Оператор может использовать данную функцию в полном объеме следующим образом:

1. Задайте нулевые координаты в абсолютном режиме (горит индикатор «ALE» («Абсолютная система координат»)) в основной исходной точке заготовки, например, в точке О на рис. (1) на следующей странице. Задайте дополнительные нулевые положения в дополнительных исходных точках заготовки, например, в точках 1, 2 и 3 на рис. (1). Режим индикации каждой пользовательской системы координат можно

Е₃. Функция 200 нулевых положений

(применимо для режима 2V_GRIND (2-координатный шлифовальный станок))

активировать путем назначения дополнительного нулевого положения в качестве ее начальных координат для выполнения обработки, когда это необходимо.

2. В режиме индикации каждой пользовательской системы можно выполнять обработку с использованием различных специальных функций.

Ш. Настройка дополнительных нулевых положений

Существует два способа настройки дополнительных нулевых положений: первый – ввод дополнительного нулевого положения напрямую, второй – сброс и настройка по достижении дополнительного нулевого положения.

Способ 1: Ввод напрямую в режиме индикации пользовательской системы координат. Нажмите клавиши 🗙 🕥 → Цифровые клавиши → 🖽.

См. пример на рис. (1): После включения станка переместите обрабатывающий инструмент в центральную точку О на рис. (1) и активируйте режим абсолютной индикации.

Сбросьте настройки, задайте в качестве нулевых координат в абсолютном режиме основную исходную точку заготовки.

	ALE
0000 🕲	

1) После настройки нулевых координат в абсолютном режиме система автоматически выполняет операцию сохранения в памяти, чтобы обеспечить возможность восстановления нулевых координат в случае сбоя питания.

	Ез. Функция 200 нулевых положений (применимо для режима 2V_GRIND (2-координатный шлифовальный станок))					
2)	Активируйте режим индикации пользовательской системы координат (два способа).					
	Способ 1:					
	Нажмите клавишу 🕜.					
	Нажмите клавишу 🕜.					
	Способ 2:					
	Нажмите клавишу 🖾.	ZERO NO				
	Нажмите клавиши 1 → [₩].	ZERIIII				
3)	Введите координаты первого дополнительно	го нулевого положения.				
	Нажмите клавиши:					
	$(X \to \pm \to 5 \to EN)$	5000 🛛 ZRE				
	$(Y) \rightarrow (2) \rightarrow (5) \rightarrow (EN)$	25000 Ø				
4)	Активируйте индикацию второй пользовател	ьской системы координат.				
	Нажмите клавишу 🕜 или 🖽.	ZERIZ				
	Нажмите клавиши 2 → [₩].					
5)	Введите координаты второго дополнительно	го нулевого положения.				
	Нажмите клавиши:					
	$(X \to \pm \to 1 \to 0 \to \mathbb{N})$	/10000 🖾 ZRE 2				
	$ \textcircled{Y} \rightarrow \textcircled{7} \rightarrow \textcircled{7} \rightarrow \textcircled{ENT} $	<u>-</u> 75000 Ø				
6)	Активируйте режим индикации третьей поль	зовательской системы координат.				
	Нажмите клавишу 🕜 или 🖽.					
	Нажмите клавиши 🕄 → 🕅.					
7)	Введите координаты третьего дополнительно	ого нулевого положения.				
	Нажмите клавиши:					
	$(X \to \pm \to 1 \to 0 \to EN)$	/00000 🛛 ZRE 3				
	$(Y \to 1 \to 0 \to 0 \to \mathbb{E})$					

Настройка всех дополнительных нулевых положений для заготовки согласно рис. (1) завершена.

Е3. Функция 200 нулевых положений

(применимо для режима 2V_GRIND (2-координатный шлифовальный станок))

Почему заданные значения координат каждого дополнительного нулевого положения отображаемым являются противоположными значениям? Далее приводится объяснение на основе выше описанного примера. В режиме пользовательской системы координат, когда координаты дополнительного нулевого положения вводятся как нулевые координаты в абсолютном режиме, отображаются нулевые координаты в абсолютном режиме в соответствующей пользовательской системе координат. Причина заключается в том, что в режиме индикации пользовательской системы координат каждое дополнительное нулевое положение используется в качестве начальной точки пользовательской системы координат. На рис. (1) показано, что точка О находится в положении с координатами (5, -25) относительно точки 1, (10, -75) относительно точки 2 и (10, -100) относительно точки 3. Если оператор вводит координаты дополнительного нулевого положения, помимо нулевых координат в абсолютном режиме в какой-либо другой точке, кроме точки с нулевыми координатами в абсолютном режиме, отображается положение данной точки в данной пользовательской системе координат.

Способ 2: Сброс при достижении положения. Когда обрабатывающий инструмент установлен в требуемое дополнительное нулевое положение, нажмите клавиши: $(X) \longrightarrow (III)$.

Способ 2 не применим для шлифовальных станков. Подробные инструкции по эксплуатации прибора с такими станками не включены в настоящее руководство.

IV. Использование дополнительных нулевых положений

После активации режима индикации пользовательской системы координат соответствующие дополнительные нулевые положения можно использовать при обработке.

Режим индикации пользовательской системы координат можно активировать нажатием клавиши (,) или клавиши .

Если используются клавиши 💮 и 💽, многократно нажимайте клавиши 💮 и 💽 до отображения нужной пользовательской системы координат.

Если используются клавиши , нажмите клавишу № и после отображения подсказки «ZERO No» («НУЛЕВОЕ ПОЛОЖЕНИЕ №») введите номер нужной пользовательской системы координат. Описание соответствующих процедур приводится в пункте 5 «Режим абсолютной/относительной индикации/индикации пользовательских систем координат» под пунктом I «Применение» в разделе «Базовые функции».

Далее приводится пример обработки заготовки согласно рис. (1): Переместите рабочий стол в центральную точку О на рис. (1).

 Активируйте режим индикации первой пользовательской системы координат. Нажмите клавишу .
 ДЕКО NO

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

	Е ₃ . Функция 200 нулевых положений (применимо для режима 2V_GRIND (2-координатный шлифовальный станок))				
2)	Введите номер. Нажмите клавиши 1 → [N].				
3)	Обработайте плоскость А, Е. Начните и продолжайте шлифование до сброса отображаемых значений осей X и Y на нуль.	0000 © ZRE)			
4)	Активируйте вторую пользовательскую систему координат. Нажмите клавишу 🟠.	5000 © ZRE 2 50000 ©			
5)	Обработайте плоскость В, С. Начните и продолжайте шлифование до сброса отображаемых значений осей X и Y на нуль.	0000 & ZRE 2 0000 Ø			
6)	Активируйте третью пользовательскую систему координат. Нажмите клавишу .	0000 © ZRE] 25000 ©			
7)	Обработайте плоскость В, D. Начните и продолжайте шлифование до сброса отображаемых значений осей X и Y на нуль.	0000 ©			
8)	Вернитесь в абсолютный режим. Нажимайте клавишу 🚺 до отображения «ALE» («Абсолютная система координат»)				
V.	Удаление дополнительных нулевых пол проблемы	южений и связанные с этим			

1. Удаление дополнительных нулевых положений

В абсолютном режиме (режим «ALE» («Абсолютная система координат»)) 10 раз последовательно нажмите клавишу , при этом все сохраненные в памяти дополнительные нулевые положения удаляются, в качестве 200 дополнительных нулевых положений назначается одинаковые нулевые координаты, заданные в абсолютном режиме.

2. Сброс во время использования дополнительного нулевого положения

Дополнительное нулевое положение используется в режиме индикации соответствующей пользовательской системы координат, при сбросе в этом режиме фактически устанавливается новое дополнительное нулевое положение. Точка, в

Е3. Функция 200 нулевых положений

(применимо для режима 2V_GRIND (2-координатный шлифовальный станок))

которой выполняется процедура сброса, становится новым дополнительным нулевым положением, и новое дополнительное нулевое положение заменяет первоначальное дополнительное нулевое положение.

3. Переключение на среднюю точку во время использования дополнительного нулевого положения

Функция «1/2» («СРЕДНЯЯ ТОЧКА») может использоваться в режиме индикации пользовательской системы координат. При переключении на среднюю точку в режиме индикации пользовательской системы координат во время использования дополнительного нулевого положения фактически устанавливается новое дополнительное нулевое положение. После выполнения операции переключения на среднюю точку первоначальное дополнительное нулевое положение заменяется новым дополнительным нулевым положением в центре между первоначальным дополнительным нулевым положением и точкой, в которой выполнена операция переключения на среднюю точку.

F. Функция распределения отверстий по окружности «PCD» (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный / электроискровой станок))

\mathbf{F}

Функция равномерного распределения отверстий на окружности «PCD»

(применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный станок и электроискровой станок))

F. Функция распределения отверстий по окружности «PCD» (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный / электроискровой станок))

Функция равномерного распределения отверстий по окружности (функция «PCD»)

Данная функция может использоваться для разделения окружности на равные дуги, например, при обработке высверливаемых отверстий с равномерным распределением на фланце. После выбора данной функции в окне сообщений отображается подсказка для оператора о необходимости ввода различных параметров.

Необходимо задать следующие параметры:

1. Положение центра окружности

Положение центра окружности – «СТ POS» определяется относительно центра инструмента сразу после настройки и установки в требуемое положение, например, как положение точки О относительно точки А на рис. (А).

2. Диаметр – «DIA»

Диаметр окружности, разделяемой на равные сегменты.

3. Количество отверстий – «NUMBER»

Количество отверстий, равномерно распределяемых по окружности. Например, как показано на рис. (В), 5 точек, от точки 1 до точки 5, используется для разделения дуги окружности от 0° до 180° на 4 равных сегмента. Таким образом, можно использовать 9 точек для разделения всей окружности на 8 равных сегментов, при этом точка 9 совпадает с точкой 1. Как показано на рисунке, для высверливания 8 отверстий по окружности, разделенной на 8 сегментов, в качестве количества точек следует ввести 9.

4. Начальный угол – «ST ANG»

Угол начальной точки дуги окружности, разделяемой на равные сегменты.

5. Конечный угол – «ED ANG»

Угол конечной точки на окружности, разделяемой на равные сегменты.

Примечание: Описание процедуры ввода настроек «ST ANG» («НАЧАЛЬНЫЙ УГОЛ») и «ED ANG» («КОНЕЧНЫЙ УГОЛ») см. в пунктах 7 и 8 «Ввод начального/ конечного угла дуги окружности» на странице 19.

Далее приводится пример обработки круглой заготовки согласно рис. (C):

1) Прежде всего определите центральное положение заготовки и завершите настройку и установку инструмента.

Нажмите клавишу 🐼, чтобы активировать функцию

равномерного распределения отверстий по окружности «PCD» («распределение по окружности»).

F. Функция распределения отверстий по окружности «PCD» (применимо для режимов MILL_MS / MILL_M / EDM (многофункциональный / универсальный фрезерный / электроискровой станок))

 Нажмите клавишу () или (), чтобы выбрать плоскость.

Введите параметр. Выберите плоскость XY. Нажмите клавишу [11], чтобы перейти к следующему действию

P[[]]- X Z	
или	
PC 11 - Y Z	
	1
PLJ-X Y	

(Данная настройка предусмотрена только в индикаторе 3V, индикатор 2V оснащен только опцией плоскости XY, то есть, выбор плоскости обработки не требуется, можно сразу переходить к следующему действию.)

3)	Введите центральное положение дуги окружности.		
	Нажмите клавиши $X \to \bigcirc \to \boxtimes$,		CT POS
	$X \to 0 \to \mathbb{E}$		
	Нажмите клавишу 💽, чтобы перейти к следующему действию.		
4)	Введите диаметр дуги окружности		
	Нажмите клавиши $1 \rightarrow 0 \rightarrow 0 \rightarrow \mathbb{H}$.	<i>10000</i> 🛛	
	Нажмите клавишу 💽, чтобы перейти к		
	следующему действию.		
5)	Введите количество точек для равномерного разделения дуги.	NUMBER	
	На рис. (С) используется 6 точек для разделения дуги от 0° до 300° на 5 равных сегментов.		NUMBER
	Нажмите клавиши 6 → [₩].		
	Нажмите клавишу 💽, чтобы перейти к следующе	ему действию.	
	Можно также использовать 7 точек для разделения всей окружности на 6 равных сегментов.		NUMBER
	Нажмите клавиши [7] → [₩].		
	Нажмите клавишу 🚺, чтобы перейти к следующо	ему действию.	

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

F N	. Функция распределения отверстий по окружности «PCD IILL_M / EDM (многофункциональный / универсальный)» (применимо для режимов MILL_MS / фрезерный / электроискровой станок))
6)	Введите начальный угол.	ST ANG
	Нажмите клавиши 💽 → 🕅.	0.000 🐼 SIT /NG
	Нажмите клавишу 💽, чтобы перейти к следующему действию.	
7)	Введите конечный угол.	ED ANG
	Если дуга разделяется 6 точками, нажмите клавиши $3 \rightarrow 0 \rightarrow 0 \rightarrow 1$.	
	Нажмите клавишу 🚺, чтобы перейти к следующему действию.	
	Если дуга разделяется 7 точками, нажмите клавиши $3 \rightarrow 6 \rightarrow 0 \rightarrow \mathbb{N}$.	
	Нажмите клавишу 🚺, чтобы перейти к следующему действию.	
8)	Выполните обработку.	
	Отображение разделения дуги на 5 равных сегментов.	□
	Отображение разделения дуги на 6 равных сегментов.	

- 9) Нажмите клавишу (), после этого будет отображена следующая точка обработки, переместите обрабатывающий инструмент так, чтобы сбросить отображаемые значения обеих осей на нуль и достичь соответствующего положения обработки.
- 10) Функцию равномерного распределения по окружности «PCD» можно деактивировать в любое время нажатием клавиши

G. Обработка поверхности под углом (применимо для режима MILL_MS (многофункциональный станок))

G

Обработка поверхности под углом

(применимо для режима MILL_MS (многофункциональный станок))

G. Обработка поверхности под углом (применимо для режима MILL_MS (многофункциональный станок))

Обработка поверхности под углом

Когда обработка больших поверхностей под углом является частью рабочего задания, функция обработки под углом может упростить выполнение задания.

I. Выравнивание угла скоса

Когда поверхность обработки расположена на плоскости XY, как на рис. (а), перед обработкой поверхности под углом необходимо выровнять заготовку по углу скоса. В этом случае используется функция обработки поверхности под углом для выравнивания исходной плоскости и угла скоса.

Процедура выравнивания угла скоса:

Прежде всего установите заготовку на рабочий стол так, чтобы приблизительно выровнять линию скоса под требуемым углом скоса.

- 1. Нажмите клавишу 💭, чтобы активировать функцию обработки поверхности под углом.
- 2. Выберите плоскость обработки плоскость ХҮ.
- 3. Введите угол скоса поверхности «ANGLE» («УГОЛ»).
- 4. Переместите рабочий стол так, чтобы создать контакт измерительного прибора (например, циферблатный индикатор) фрезерного станка с выравниваемой исходной плоскостью. Сбросьте показания шкалы на нуль и переместите рабочий стол на произвольное расстояние вдоль оси Х.
- 5. Нажмите клавишу (), снимите показания с дисплея и переместите стол вдоль оси Y, чтобы сбросит отображаемое значение на нуль.
- 6. Отрегулируйте угол заготовки и сбросьте показания шкалы на нуль.

Дал заго	нее приводится пример выравние отовки под 45°, как показано на рис. (l	зания угла о).	скоса		$\mathbf{\mathbf{A}}$
1)	Установите заготовку на рабочем сто около 45°. Нажмите клавишу 🔐.	оле под углом [L] I NE]]	и скоса ХҮ	$\langle \rangle$	
2)	Выберите плоскость XY. Нажмите клавишу 🕅.	LINE-	XY		

3)

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

- 6) Переместите обрабатывающий инструмент вдоль оси Ү. Отрегулируйте угол скоса заготовки, выравниваемая исходная плоскость должна войти в контакт с измерительным прибором, показания шкалы должны быть сброшены на нуль.
- 7) Переместите рабочий стол так, чтобы сбросить отображаемое значение оси на нуль.

Функцию обработки поверхности под углом можно деактивировать в любой момент нажатием клавиши

II. Обработка поверхности под углом

При обработке на плоскости XZ или YZ функция обработки под углом содержит подсказки с пошаговыми инструкциями обработки поверхности под углом.

Обработка с использованием функции обработки под углом:

При обработке на плоскости ХZ или YZ сначала выровняйте шпиндель обрабатывающего инструмента с углом скоса, выполните настройку инструмента и нажмите клавишу 🕅 чтобы активировать функцию обработки под углом.

- 1. Выберите плоскость XZ или YZ.
- 2. Введите диаметр инструмента – «DIA» («ДИАМЕТР»).
- 3. Введите начальную точку «ST POS» («НАЧАЛЬНОЕ ПОЛОЖЕНИЕ»).
- 4. Введите конечную точку «ED POS» («КОНЕЧНОЕ ПОЛОЖЕНИЕ»).
- 5. Функцию обработки поверхности под углом можно деактивировать в любой момент нажатием клавиши

TINE|-|X|Y|

INE-XZ

10000 🖾

11 I A

G. Обработка поверхности под углом (применимо для режима MILL_MS (многофункциональный станок))

Далее приводится пример:

- Выровняйте угол скоса, выполните настройку инструмента и нажмите клавишу .
- 2) Выберите плоскость обработки.

Нажмите клавишу 🚯.

Выберите плоскость XZ.

Нажмите клавишу [11].

3) Введите диаметр инструмента.

Нажмите клавиши $1 \rightarrow 0 \rightarrow \mathbb{N}$. Нажмите клавишу \mathbb{O} .

4) Введите координаты начальной точки.

Нажмите клавиши:

5) Введите координаты конечной точки.

Нажмите клавиши:

6) Активируйте режим обработки.

☐ ☐ ☐ ☐ ☐ ☐ ⓒ ☐ 5 T ☐ € X [©] ☐ ☐ ☐ ☐ ☐ ☐ ⓒ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ⓒ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ⓒ	Z
Image: Second state Image: Second state Imag	Z
	I

Нажмите клавишу 💮 или 💽, после чего на дисплее отобразится последняя/ следующая точка обработки.

Функцию обработки поверхности под углом можно деактивировать в любой момент нажатием клавиши .

Н. Функция вычислений (применимо для режима MILL_MS (многофункциональный станок))

Η

Функция вычислений

(применимо для режима MILL_MS (многофункциональный станок))

Н. Функция вычислений

(применимо для режима MILL_MS (многофункциональный станок))

Функция вычислений

Иногда во время обработки требуется вычисление определенных значений. Цифровые индикаторы серии SDS6 оснащены функцией вычислений.

Далее приводится подробное описание данной функции:

(CTR)

Клавиша функции вычислений, используется для активации функции вычислений. Функцию вычислений можно деактивировать в любое время нажатием этой же кнопки.

arc

Клавиша вычисления квадратного корня.

Клавиша «обращения» тригонометрических функций. Нажмите данную клавишу, затем клавишу определенной тригонометрической функции, чтобы выполнить вычисление обратной тригонометрической функции.

(CA)

Клавиша отмены последнего ввода и результата последнего вычисления.

()→ (Х) (У) Передача данных об осях, нажмите эти клавиши последовательно, чтобы выполнить передачу полученного значения.

Отмена передачи данных об осях.

Пример: Нажмите клавишу (П), чтобы активировать функцию вычислений.

Выполните следующее вычисление: $10 + 10 \div 2 \times 5 = 35$

$1 \rightarrow 0 \rightarrow + \rightarrow 1 \rightarrow 0 \rightarrow + \rightarrow 2 \rightarrow \times \rightarrow 5 \rightarrow = 35$

Выполните вычисление: $sin45^\circ = 0.707$

$(4) \rightarrow (5) \rightarrow (20) \rightarrow 0,707$

Выполните вычисление: Дуга sin0,707 = 44,991

 $\textcircled{0} \rightarrow \fbox{0} \rightarrow \fbox{0} \rightarrow \fbox{0} \rightarrow \fbox{0} \rightarrow \r{0} \rightarrow$

Н. Функция вычислений

(применимо для режима MILL_MS (многофункциональный станок))

Выполните следующее вычисление:

Расстояние AB на рисунке = $\sqrt{10^2 + 30^2} = 31,623$

Отображается результат:

Выполните передачу значения 31,62277 для оси Ү.

Нажмите клавишу

Нажмите клавишу 🕥

<u> </u>	\boxtimes	T
<u> </u>	\boxtimes	Y

Как показано на рисунке, расстояние AB = 31,62277, инструмент установлен в точке A. Переместите рабочий стол, чтобы сбросить отображаемое значение на нуль, после этого установите инструмент в положение B, и можно начинать обработку отверстия B.

Деактивируйте функцию передачи полученного значения для оси и снова активруйте функцию вычислений.

Нажмите клавиши 🕅 → 😭.	
Нажмите клавишу 🕅, чтобы деактивировать	
функцию вычислений.	

Примечание: Когда во время ввода значения или вычисления в информационном окне отображается сообщение «CTR E», которое обозначает неверный результат вычислений. Нажмите клавишу (A), чтобы возобновить вычисление. Максимальное число десятичных цифр составляет 5, рекомендуется использовать целые числа.

I. Компенсация диаметра инструмента (применимо для режима 3V_MILL_MS (3-координатный многофункциональный станок))

I

Компенсация диаметра инструмента

(применимо для режима 3V_MILL_MS (3-координатный многофункциональный станок))

I. Компенсация диаметра инструмента

(применимо для режима 3V_MILL_MS (3-координатный многофункциональный станок))

Функция компенсации диаметра инструмента

При обработке четырех сторон заготовки, как показано на рис. (1), то, если не используется функция компенсации диаметра, оператор должен ввести дополнительное расстояние подачи, равное диаметру инструмента, для каждой стороны, чтобы выполнить обработку по всей длине. Функция компенсации диаметра, предусмотренная в цифровом индикаторе, выполняет требуемую компенсацию автоматически.

Примечание: Компенсацию диаметра инструмента можно использовать только в направлении оси X или Y.

Рабочая процедура:

- 1. Нажмите клавишу 💭, чтобы активировать функцию компенсации.
- 2. Выберите способ обработки из 8 предварительно заданных способов (отображается подсказка «WHICH» («КАКОЙ»)).

- 3. Введите диаметр инструмента «DIA» («ДИАМЕТР»).
- 4. Активируйте режим обработки.

Далее приводится описание рабочей процедуры на конкретном примере:

Обработка плоскости а и заготовки, как показано на рис. (1).

1) Нажмите клавишу , чтобы активировать функцию компенсации диаметра инструмента.

(3)

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

	I. Компенсация диаметра инс (применимо для режима 3V_MILL_MS (3-координати)	струмента ый многофункциональный станок))
2)	Выберите один из предварительно заданных режи	ИМОВ.
	Начните обработку с положения согласно рис. (2).	
	Нажмите клавиши ⑨ → [₩].	
	Начните обработку с положения согласно рис. (3).	
	Нажмите клавиши 0 → [№].	
3)	Введите диаметр инструмента.	
	Нажмите клавиши 6 → [₩].	
	Нажмите клавишу 🚯.	
4)	Активируйте режим обработки.	
	① Начните обработку в положении согласно рис. (2).	
	Переместите обрабатывающий инструмент так, чтобы задать отображаемое значение оси X «150.000», затем переместите обрабатывающий инструмент так, чтобы задать отображаемое	
	значение оси і «тоо.ооо». таким образом, ві сторон.	ыполните обработку двух внешни:
	② Начните обработку в положении согласно рис.	(3).

Переместите обрабатывающий инструмент так, чтобы задать отображаемое значение оси Х «– 150.000», затем переместите обрабатывающий инструмент так, чтобы задать отображаемое

значение оси Y «-100.000». Таким образом, выполните обработку двух внешних сторон.

5) Функцию компенсации диаметра инструмента можно деактивировать в любой момент нажатием клавиши

J. Хранилище 200 инструментов (применимо для режима LATHE (токарный станок))

J

Хранилище 200 инструментов

(применимо для режима LATHE (токарный станок))

J. Хранилище 200 инструментов (применимо для режима LATHE (токарный станок)) Хранилище 200 инструментов

При обточке различных заготовок или различных поверхностей заготовок могут требоваться разные инструменты и, следовательно, демонтаж, установка и регулировка инструментов. Цифровой индикатор SDS6 оснащен функцией хранилища 200 инструментов, которая упрощает работу.

Примечание: Функция хранилища 200 инструментов может использоваться только для токарного станка, который оборудован рамой регулировки инструментов. Не используйте данную функцию, если станок не оборудован рамой регулировки инструментов.

1. Установите основной инструмент. В режиме «ALE» («Абсолютная система координат») переместите основной инструмент до контакта с рамой регулировки инструмента, чтобы сбросить отображаемое значение оси X или оси Y.

Убедитесь, что положение второго инструмента относительно положения основного инструмента, (а) также является нулевой точкой абсолютной системы координат. Как показано на рис. (а), относительное положение второго инструмента составляет: ось X 25–30 = -5; ось Y 20–10 = 10.

- 3. Присвойте инструменту номер и сохраните относительное положение основного инструмента в память цифрового индикатора.
- 4. При обработке оператор может ввести номера используемых инструментов, затем цифровой индикатор отображает относительное положение используемого инструмента от нулевой точки абсолютной системы координат. Для сброса отображаемых значений оси X и оси Y переместите стол токарного станка.

- 5. В хранилище инструментов можно сохранять данные о 200 инструментах.
- 6. Если активирована функция хранилища 200 инструментов, для отключения данной функции нажмите клавишу (±) последовательно 10 раз.

Если функция хранилища 200 инструментов отключена, для активации данной функции нажмите клавишу $\textcircled{\pm}$ последовательно 10 раз в режиме «ALE» («Абсолютная система координат»).

Означает, что хранилище инструментов закрыто.

Означает, что хранилище инструментов открыто

J. Хранилище 200 инструментов (применимо для режима LATHE (токарный станок))

Примечание: Значение оси Y, указанное выше, представляет собой суммарное значение оси Y и оси Z, или оси Z/Z₀ в более ранней модели индикатора для токарного станка.

Операция ввода данных об инструментах и вызов инструмента:

 Введите данные об инструменте в абсолютной системе координат, сбросьте отображаемое значение на нуль путем перемещения основного инструмента до контакта с рамой регулировки инструмента, назначьте первый инструмент в качестве основного инструмента.

0000 🖾 TOOL 11

0000 🖸

TINNI

2) Активируйте режим ввода.

Нажмите клавишу 🚾.

3) Введите данные следующего инструмента.

Нажмите клавиши $X \to 0 \to \mathbb{N}$, $Y \to 0 \to \mathbb{N}$

Нажмите клавишу 🚯

4) Введите количество инструментов.

Нажмите клавиши 2 → [80]. Нажмите клавишу [].

5) Введите данные об инструменте.

Нажмите клавиши:

- 5000	\boxtimes	TOOL	2
	\odot		

6) Нажмите клавишу 🚯, чтобы продолжить ввод данных о следующем инструменте.

Чтобы выйти из режима ввода, нажмите клавишу 🚾.

Далее приводится описание использования хранилища инструментов после ввода данных об инструментах. Сначала установите второй инструмент.

1) Активируйте режим использования.

Нажмите клавишу 📖

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

J. Хранилище 200 инструментов (применимо для режима LATHE (токарный станок))

2) Активируйте основной инструмент.

	Нажмите клавишу 🕜.		BASE
	По умолчанию первый инструмент является осн назначить основным инструментом второй инстравишу .	овным инструментом грумент, для этого	и. Можно также просто нажмите
	Нажмите клавишу 💽.		
3)	Вызовите второй инструмент.		
	Нажмите клавиши 2 → [№].		
4)	Выход.		ALE
	Нажмите клавишу 📖.		

Переместите инструмент на плоскости, чтобы сбросить отображаемое значение оси X и оси Z/Z_0 на нуль.

Когда второй инструмент достигает исходной точки, оператор аналогичным способом может выполнить ввод и вызов 200 инструментов.

Примечание: Отображаемое значение в абсолютной системе координат – «ALE» можно сбросить на нуль только с использованием основного инструмента. В системе координат «INC» отображаемое значение можно сбросить на нуль с использованием дополнительных инструментов.

К. Функция измерения сужения конуса (применимо для режима LATHE (токарный станок))

K

Функция измерения сужения конуса

(применимо для режима LATHE (токарный станок))

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

К. Функция измерения сужения конуса (применимо для режима LATHE (токарный станок))

Функция измерения сужения конуса

При обточке можно измерять сужение конусообразной заготовки.

Процедура:

Как показано на рисунке, наконечник рычажного датчика касается положения А на поверхности заготовки. Путем его прижима можно сбросить положение рычажного датчика на нуль.

1) Активируйте функцию измерения сужения СОССС СС МЕЛЬИ Конуса.

Нажмите клавишу 🔘

 Переместите рычажный датчик в положение В на поверхности заготовки, нажмите на него, чтобы сбросить положение рычажного датчика на нуль.

ALE.		ت		الكالك 1
ALE	0000	\heartsuit		

\boxtimes	MENSU
Y	

3) Проведите вычисление.

Нажмите клавишу [11].

Отображаемое значение оси Х – сужение.

Отображаемое значение оси У – угол конуса.

4) Выход.

Нажмите клавишу 🔘

\odot

L. Функция вывода сигнала совпадения «EDM» (применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

L

Функция вывода сигнала совпадения

(применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

L. Функция вывода сигнала совпадения «EDM» (применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

Новая функция вывода сигнала совпадения

1. Функция

Данная функция используется специально для обработки на электроискровом станке. Когда заданное целевое значение оси Z электроискрового станка совпадает с текущим значением, цифровой индикатор экспортирует сигналы переключения для управления инструментом электроискровой обработки для прекращения обработки в глубину.

Цифровой индикатор модели SDS6-3V используется для настройки в направлении оси Z, как показано на рис.1. То есть, чем больше глубина, тем большее значение координаты оси Z отображается. Глубина увеличивается с начала обработки, и отображаемое значение оси Z постепенно возрастает.

В соответствии с заданным направлением по оси Z направление обработки может быть либо положительным, либо отрицательным. Когда электрод углубляется, и обработка выполняется сверху вниз, отображаемое цифровым индикатором значение возрастает, в этом случае направление обработки является положительным. Такое направление – стандартная настройка.

Когда электрод перемещается вверх, и обработка выполняется снизу

вверх, отображаемое цифровым индикатором значение уменьшается, в этом случае направление обработки является отрицательным, на рис. 1 показана отрицательная обработка.

Цифровой индикатор модели SDS6-3V оснащен также функцией контроля отрицательной высоты возгорания, другие модели не содержат такую функцию. Данная функция обеспечивается интеллектуальным устройством отслеживания местоположения, тестирования и защиты. При положительной обработке поверхность электрода контролируется интеллектуальным устройством отслеживания местоположения, тестирования и защиты. При обработке на поверхности электрода положительной скапливается нагар; в случае длительной обработки, если превышение времени обработки не контролируется, такое скопление нагара не удаляется. Электрод при этом увеличивается в отрицательном направлении, и когда

электрод выходит за поверхность жидкости, что может привести к возгоранию и пожару и к материальному ущербу. Данная функция предназначена специально для устранения таких проблем при настройке. Если активирована функция контроля отрицательной высоты возгорания, когда возрастающая высота электрода превышает глубину обработки поверхности (то есть, отрицательную высоту возгорания), цифровой индикатор отображает аварийный сигнал. Кроме того, передаваемый сигнал автоматически выключает станок электроискровой обработки для предотвращения пожара (как показано на рис. 2).

L. Функция вывода сигнала совпадения «EDM» (применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

2. Подробное описание процедуры:

Далее приводится описание процедуры на основе примеров 1, 2 и 3.

- 1) Перед обработкой сначала введите параметры отрицательной высоты возгорания, выход из режима обработки и направления обработки.
- 3) Нажмите кнопку (), введите требуемое значение глубины (отображается также для оси Х). Например, 10. Затем нажмите кнопку (), чтобы подтвердить заданное значение. После этого нажмите кнопку (), чтобы выйти из режима настройки глубины. В это же время активируйте режим «EDM» («Электроискровая обработка»), чтобы выполнить обработку.
- 4) Для оси Х отображается целевое значение отдельного положения. Для оси Y отображается значение достигнутой глубины. Примечание: Значения оси Y означают глубину, достигаемую при обработке заготовки. Для оси Y отображается значение отдельного положения в реальном времени. Примечание: Значения оси Z означают значения положений основной оси электрода на оси Z.
- 5) Начните обработку. Отображаемое значение оси Z постепенно приближается к целевому значению. Отображаемое значение оси Y также приближается к целевому значению. В случае повторного перемещения электрода вверх и вниз отображаемое значение оси Z изменяется соответствующим образом. Однако отображаемое значение оси Y не изменяется и всегда относится к значению глубины, достигнутой при обработке.
- 6) Когда отображаемое значение оси Z совпадает с заданным целевым значением, переключатель совпадения размыкается, электроискровой станок останавливает обработку, и в окне сообщений отображается «EDM. Е». В зависимости от настроек оператора существует 2 выхода: ① Автоматический режим означает автоматический выход из режима обработки на электроискровом станке и возврат в режим индикации до данного цикла обработки; ② Режим приостановки постоянно отображается сообщение «EDM. Е», необходимо нажать клавишу , чтобы выйти из режима обработки и вернуться к режиму первоначальной индикации.

ERRHIGH

ERRHIGH

(X)

Y)

(Z)

L. Функция вывода сигнала совпадения «EDM»

(применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

www.metalmaster.ru

3. Настройка «ERRHIGH» («ОШИБКА ВЫСОТЫ»), выход из режима обработки и направление обработки:

Перед обработкой сначала необходимо ввести настройку «ERRHIGH» («ОШИБКА ВЫСОТЫ»), выход из режима обработки и направление обработки.

- Активируйте режим «ЕDM» («Электроискровая обработка»).
 Нажмите клавишу []].
- 2) Активируйте режим настройки.

Нажмите клавишу	(\mathbf{b})
-----------------	----------------

 Введите настройку отрицательной высоты возгорания.

Введите высоту, то) ести	5, 150.
--------------------	--------	---------

Нажмите клавиши	$1 \to 5 \to 0 \to \mathbb{EN}.$

Нажмите	клавишу	(₽)
---------	---------	-----

4) Введите настройку выхода из режима обработки.

Нажмите клавиши $1 \to \mathbb{N}$, чтобы задать режим приостановки.

STOP	
------	--

Нажмите клавишу 🚯

Индикация «AUTO» («АВТОМАТИЧЕСКИ») означает автоматический режим выхода, «STOP» («ОСТАНОВ») означает режим приостановки. Если первоначально задан режим приостановки, и отображается «STOP» («ОСТАНОВ»), нажмите «О», чтобы перейти в автоматический режим, при этом появится индикация «AUTO» («АВТОМАТИЧЕСКИ»). Для перехода между режимами можно использовать клавиши 1 и 0.

5) Выберите положительное или отрицательное направление обработки.

Нажмите клавиши $\bigcirc \rightarrow \bigotimes$,	NEGATIV
чтооы задать отрицательную обработку.	
Положительная обработка – клавиша <u>1</u> .	POSITIV
Отрицательная обработка – клавиша 🚺.	NEGATIV

L. Функция вывода сигнала совпадения «EDM» (применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

6) Выберите режим электроискровой обработки.

Существует возможность выбора двух режимов электроискровой обработки – 0 и 1.

Нажмите клавиши $0 \to \mathbb{E}^{\mathbb{N}}$, чтобы выбрать режим 0.

MOJEIØ

Реле действует следующим образом:

- А Питание выключено, реле разомкнуто.
- В Сброс центрального процессора, реле разомкнуто.
- С Запуск центрального процессора, реле замкнуто.
- D Выполнение функции «EDM» («Электроискровая обработка»), реле замкнуто.
- Е Достижение глубины, заданной для функции «EDM» («Электроискровая обработка»), реле разомкнуто.

Реле действует следующим образом:

- А Питание выключено, реле разомкнуто.
- В Сброс центрального процессора, реле разомкнуто.
- С Запуск центрального процессора, реле разомкнуто.
- D Выполнение функции «EDM» («Электроискровая обработка»), реле разомкнуто.
- Е Достижение глубины, заданной для функции «EDM» («Электроискровая обработка»), реле замкнуто.

Сначала необходимо убедиться, что выбран режим положительной обработки; при отрицательной обработке для заготовки на рис. (f) следует задать режим отрицательной обработки и перейти к выходу из режима обработки.

7) Выход из режима настройки.

Нажмите клавишу 🕅

Можно также задавать различные параметры во время обработки. После запуска электроискровой обработки, если необходимо изменить первоначальные настройки «DEPTH» («ГЛУБИНА»), «ERRHIGH» («ОШИБКА ВЫСОТЫ») и «PROCESSING DIRECTION» («НАПРАВЛЕНИЕ ОБРАБОТКИ»), оператор может нажать клавиши («ГЛУБИНА»), можно изменить значение глубины. При последующих нажатиях клавиши в окне будут поочередно отображаться сообщения «ERRHIGH» («ОШИБКА ВЫСОТЫ»), «АUTO» («АВТОМАТИЧЕСКИ») (или «STOP» («ОСТАНОВ»)) и «POSITIVE» («ПОЛОЖИТЕЛЬНОЕ») (или «NEGATIVE» («ОТРИЦАТЕЛЬНОЕ»)). После этого можно изменять каждый элемент по выбору. Далее нажимайте кнопку од появления сообщения «EDM» («ЭЛЕКТРОИСКРОВАЯ ОБРАБОТКА»), чтобы вернуться в режим обработки.

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

L. Функция вывода сигнала совпадения «EDM»

(применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

4. Примеры положительной обработки:

Пример 1: Обработка полости литой заготовки, см. схему на рисунке (а)

Убедитесь, что выбрано положительное направление обработки.

2) Активируйте настройку глубины обработки.

Нажмите клавишу 🕅

3) Введите значение глубины.

Нажмите клавиши $2 \rightarrow 0 \rightarrow \square$. Нажмите клавишу \bigcirc .

- 4) Начните обработку.
- 5) В течение 3 секунд отображается сообщение «EDM E».

Вернитесь в режим до обработки.

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

L. Функция вывода сигнала совпадения «EDM»

(применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

5. Пример отрицательной обработки:

Пример 3: Обработка заготовки, см. схему на рисунке (f)

Прежде всего убедитесь, что выбрано отрицательное направление обработки.

 Сначала переместите основную ось электрода до исходного положения обработки заготовкой, как показано на рис. (g).

Затем нажмите клавиши (Z) → (ш), чтобы сбросить индикацию

 Активируйте режим «EDM» («ЭЛЕКТРОИСКРОВАЯ ОБРАБОТКА»).

Нажмите клавишу 🕅

3) Введите значение глубины.

Нажмите клавиши $\pm \rightarrow 6 \rightarrow 6$.

Нажмите клавишу 🚯

- 4) Начните обработку.
- Дождитесь достижения целевого значения.
 В течение 3 секунд отображается сообщение «EDM E». После этого выполняется автоматический выход.

	<u>]]</u> E P T H
- 5000 X - 5000 X - 6000 X	
	INC

L. Функция вывода сигнала совпадения «EDM» (применимо для режима 3V-EDM (3-координатный станок электроискровой обработки))

6. Комбинированное использование функции «РСD» («РАСПРЕДЕЛЕНИЕ ПО ОКРУЖНОСТИ») и функции «ЕDM» («ЭЛЕКТРОИСКРОВАЯ ОБРАБОТКА»):

Функции «PCD» («РАСПРЕЛЕЛЕНИЕ ПО ОКРУЖНОСТИ») «EDM» И («ЭЛЕКТРОИСКРОВАЯ ОБРАБОТКА») можно использовать совместно. Сначала оператор может использовать функцию равномерного распределения по окружности в рабочих условиях, затем нажать клавишу 🐼, чтобы выйти из режима равномерного распределения по окружности. После этого можно нажать клавишу EDM чтобы активировать функцию электроискровой обработки. Нажмите клавишу $[\nu_2]$ чтобы вернуться в режим, в котором была активирована функция равномерного распределения продолжить использование по окружности, можно функции равномерного И распределения по окружности. Данный цикл можно использовать со станком электроискровой обработки для равномерного распределения отверстий по окружности.

7. Функция переключения режимов индикации:

В режиме электроискровой обработки, если оператор должен определить координаты на внешней плоскости ХҮ, можно нажать клавишу , после этого в окне сообщений отображается «EDM P», а также координаты осей Х и Ү для внешней плоскости ХҮ. Нажмите кнопку с еще раз, чтобы вернуться к первоначальной индикации в режиме электроискровой обработки. Данная функция используется только для переключения режимов индикации и не влияет на процесс электроискровой обработки.

8. Разъем «EQUAL OUT» («ВЫВОД СИГНАЛА СОВПАДЕНИЯ») на задней панели:

Разъем «EQUAL OUT» («ВЫВОД СИГНАЛА СОВПАДЕНИЯ») соединяется с выходом реле, 1,0 А/30 В постоянного тока; 0,5 А/125 В переменного тока; 0,3 А/60 В постоянного тока.

КОНТАКТ	СИГНАЛ	ЦВЕТ ПРОВОДА
1	NC (Нормально замкнутый)	Коричневый
3	СОМ (Общий контакт)	Синий
5	NO (Нормально разомкнутый)	Желто-зеленый

М. Функция цифрового фильтра (применимо для режима 2V-GRIND (2-координатный шлифовальный станок))

\mathbf{M}

Функция цифрового фильтра

(применимо для режима 2V-GRIND (2-координатный шлифовальный станок))

М. Функция цифрового фильтра

(применимо для режима 2V-GRIND (2-координатный шлифовальный станок))

Функция цифрового фильтра

В процессе шлифования значение индикации быстро изменяется из-за вибраций шлифовального станка, это может привести оператора в замешательство. Специальный индикатор SDS6-2V для шлифовального станка оснащен функцией цифрового фильтра, которая удерживает отображаемое значение во время вибраций шлифовального станка.

Оператор может использовать функцию цифрового фильтра следующим образом:

 Активируйте функцию цифрового фильтра.
 Нажмите клавишу [Г].
 Нажмите клавишу [Г], чтобы деактивировать функцию цифрового фильтра.

Примечание: Функцию цифрового фильтра можно использовать только в режиме системы координат «INC» или в режиме абсолютной системы координат «ALE».

N. Функция N3 (применимо для режима 2V-MILL_MS (2-координатный многоцелевой фрезерный станок))

Ν

Функция N3

(применимо для режима 2V-MILL_MS (2-координатный многоцелевой фрезерный станок))

N. Функция N3

(применимо для режима 2V-MILL_MS (2-координатный многоцелевой фрезерный станок))

Данная функция применяется для вертикальной обработки по наклонной по оси Z.

Предусмотрено четыре режима обработки, как показано в следующем примере:

- (2) $\Delta Z = 0,1$ A = 120°
- ③ $\Delta Z = -0.1$ A= -120°

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

N. Функция N3 (применимо для режима 2V-MILL_MS (2-координатный многоцелевой фрезерный станок))			
Далее приводится пошаговое описание процедуры:			
(B)	качестве примера используется плоскость обра	оотки ХД.)	
1)	Переместите инструмент в начальную точку.	$\square \square $	
	Нажмите клавиши $X \rightarrow G$	$\square \square $	
	$X \rightarrow CLS$.		
2)	Нажмите клавишу 🐼, чтобы активировать функцию N3.		
3)	Нажмите клавишу 🚯 и выберите плоскость		
	обработки.	\bigcirc	
4)	Выберите плоскость XZ.		
	Нажмите клавишу 🕅, чтобы подтвердить.		
5)	Введите угол.	60000 🛛 🗌 ANGLE	
	Нажмите клавиши $6 \rightarrow 0 \rightarrow \mathbb{N}$.		
	Нажмите клавишу 💽, чтобы перейти к следующему действию.		
6)	Введите шаг подачи по оси Z (дельта Z).	0.100 🖾Z ISTEP	
	Нажмите клавиши $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc 1 \rightarrow \blacksquare$.		
	Нажмите клавишу 🚯 и начните обработку.		
	(Примечание: Во время обработки все значени	ия дельта Z шага подачи идентичны.)	
7)	Точка 1 – переместите ось X в положение 0, переместите ось Z на 0,1 мм вперед.	□□□□□□ □□ 🖾 € x • Z	
	Нажмите клавищу 🕅 чтобы перейти к		
	следующей точке.		
8)	Точка 2 – переместите ось Х в положение 0, переместите ось Z на 0,1 мм вперел		
		0200 🖸	
	Нажмите клавишу [11], чтобы перейти к следующей точке.		

плоскости ХΖ.)

Общество с ограниченной ответственностью «МеталМастер»

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

9)	Точка 3 – переместите ось X в положение 0, переместите ось Z на 0,1 мм вперед. Нажмите клавишу (Т), чтобы перейти к спелующей точке	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
10)	Последняя точка – переместите ось X в		
,	положение 0, переместите ось Z на 0,1 мм вперед.		
11)	Нажмите клавишу 🛺, чтобы деактивировать функцию. Цифровой индикатор отображает текущее значение ХҮ.	<i>12817</i> 15 ⊠ZER <i>10000</i> ⊗	
	Нажмите клавишу 🔝, чтобы подтвердить.		
12)	Проверьте значение с помощью следующих уравнений:		
	$X_{(I)} = \frac{\Delta Z}{tgA} \times I \qquad \Delta X = \frac{\Delta Z}{tgA}$		
	 Z (I) = ΔZ × I I: Количество шагов Дельта Х: Подача по оси Х между каждым шагом. Дельта Z: Подача по оси Z между каждым шагом 		
	XI: Смещение оси X в I-ой точке. ZI: Смещение оси Z в I-ой точке.		
	(Примечание: Процедура обработки на пл	оскости YZ аналогичная обработке на	

О. Поступательная обработка (применимо для режима 2V-MILL_MS (2-координатный многоцелевой фрезерный станок))

0

Поступательная обработка внутренней прямоугольной полости

(применимо для режима 2V-MILL_MS (2-координатный многоцелевой фрезерный станок))

О. Поступательная обработка

(применимо для режима 2V-MILL_MS (2-координатный многоцелевой фрезерный станок))

www.metalmaster.ru

Поступательная обработка внутренней прямоугольной полости

Когда требуется обработка внутренней полости заготовки, как показано на схеме на рис. (1), можно использовать функцию поступательной обработки внутренней полости; подсказки, отображаемые для оператора, упрощают работу. Как показано на рис. (3), обработка начинается с центра внутренней полости и производится в направлении стрелок.

Рабочая процедура:

- 1. Нажмите клавишу , чтобы активировать функцию поступательной обработки внутренней полости.
- 2. Введите диаметр инструмента «DIA».
- 3. Введите положение внутренней полости «СТ POS» (положение относительно центра инструмента).
- 4. Введите размер внутренней полости.
- 5. Активируйте режим обработки.

Рабочая процедура на примере:

Обработка внутренней полости заготовки согласно рис. (1).

- Выполните настройку инструмента, как показано на рис. (2). Сбросьте значения и нажмите клавишу , чтобы активировать функцию.
- 2) Введите диаметр инструмента.

3) Введите центральное положение внутренней полости.

6000 🖾	

201

CITI POIS

 \odot

Нажмите клавиши:

Нажмите клавишу 🚯

75000 🗵

60000 🛈

SIZE

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

О. Поступательная обработка

(применимо для режима 2V-MILL_MS (2-координатный многоцелевой фрезерный станок))

4) Введите размер внутренней полости.

Нажмите клавиши:

- 5) Активируйте режим обработки.
- Переместите рабочий стол станка, чтобы сбросить отображаемые значения оси X и оси Y на нуль.

78000 Ø	NO

CH SY.		NO	
	0000 🕅		

7) Нажмите клавишу (), чтобы вывести на дисплей положение следующего шага обработки. Читайте подсказки и переместите рабочий стол станка, чтобы сбросить отображаемые значения оси X и оси Y на нуль.

Функцию поступательной обработки внутренней полости можно деактивировать в любой момент нажатием клавиши .

Дополнительная информация

P

Дополнительная информация

Дополнительная информация

Дополнительная информация

I. Что должен знать пользователь:

- 1. Цифровой индикатор требует осторожного обращения.
- 2. Прибор должен быть надлежащим образом заземлен.
- 3. Применимое напряжение питания: от 80 В до 260 В переменного тока, от 50 Гц до 60 Гц.
- 4. Потребляемая мощность: 25 ВА.
- 5. Рабочая температура: от 0°С до 45°С.
- 6. Температура хранения: от -30°С до 70°С.
- 7. Относительная влажность: <90% (при 20±5°С).
- 8. Масса: ≈3,2 кг.
- 9. Не допускается скопление коррозионных газов вокруг прибора.
- 10. Число осей координат: 2-координатный, 3-координатный прибор.
- 11. Дисплей: 7-значный с индикацией символов «плюс» и «минус» (для 2 осей или 3 осей), отображение в окне сообщений посредством 8-значного устройства индикации.
- 12. Кратное увеличение частоты: 4×.
- 13. Допустимый входной сигнал: прямоугольный сигнал транзисторно-транзисторной логики (TTL).
- 14. Допустимая частота входного сигнала: ≤5 МГц.
- 15. Разрешение длины: 5 мкм, 1 мкм, 10 мкм, 0,1 мкм, 0,2 мкм, 0,5 мкм.
- 16. Рабочая клавиатура: герметичные мембранные сенсорные клавиши.
- 17. Определение интерфейса ввода растровой линейки для линейного измерения длины (9-контактное гнездо):

Контакт	1	2	3	4	5	6	7	8	9	5 1
Сигнал	Нуль	0 B	Нуль	Нуль	Нуль	А	+5B	В	Z	9 6

Дополнительная информация

www.metalmaster.ru

II. Поиск и устранение неисправностей:

Поиск и устранение неисправностей штриховой линейки и цифрового индикатора

Далее перечислены только основные неисправности. Если проблему устранить не удается, запрещается разбирать прибор самостоятельно, обращайтесь за помощью в нашу компанию или в соответствующие представительства.

Симптом неисправности	Причина неисправности	Устранение неисправности
Цифровой индикатор не отображает данные	 Подключен источник питания? Выключатель питания включен? Используется надлежащее сетевое напряжение? Замыкание источника питания внутри штриховой линейки. 	 Проверьте шнур питания, затем включите питание. Включите выключатель питания. Сетевое напряжение должно быть от 60 до 260 В. Отсоедините шнур питания штриховой линейки.
Корпус цифрового индикатора под напряжением	 Корпус обрабатывающего инструмента и цифрового индикатора заземлен надлежащим образом? Имеется утечка электрического тока из источника питания 220 В на землю. 	 Выполните надлежащее заземление корпуса инструмента и цифрового индикатора. Проверьте источник питания 220 В.
Не выполняется подсчет одной из осей цифрового индикатора	 Замените штриховую линейку линейкой второй оси, затем включите прибор, чтобы проверить выполнение подсчета. Цифровой индикатор действует в режиме какой-либо специальной функции? 	 Если подсчет выполняется, неисправна штриховая линейка. Если подсчет не выполняется, неисправен цифровой индикатор. Деактивируйте специальную функцию.
Штриховая линейка не выполняет отсчет	 Штриховая линейка выходит за пределы допустимого диапазона длины, повреждена считывающая головка. Считывающая головка штриховой линейки задевает корпус линейки, и скапливается алюминиевая стружка. 	 Отремонтируйте штриховую линейку. Отремонтируйте штриховую линейку.

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

Дополнительная информация						
Симптом неисправности	Причина неисправности	Устранение неисправности				
	 Слишком большой зазор между считывающей головкой штриховой линейки и корпусом линейки. 	 Отремонтируйте штриховую линейку. 				
	 Металлические детали штриховой линейки (заглушки, шланги, соединители) покрыты нагаром, сдавлены или повреждены, что приводит к замыканию или обрыву внутренних цепей. 	 Отремонтируйте штриховую линейку. 				
	 5. Слишком большой интервал между техническими обслуживаниями штриховой линейки, некоторые внутренние детали или компоненты повреждены. 	 Отремонтируйте штриховую линейку. 				
Штриховая линейка иногда не выполняет подсчет	 Корпус каретки штриховой линейки смещен с фрикционного родика 	 Отремонтируйте штриховую линейку. 				
	 2. Некоторые мелкие детали системы штриховой меры внутри считывающей головки штриховой линейки изношены. 	 Отремонтируйте штриховую линейку. 				
	 Загрязнены некоторые детали системы штриховой меры внутри корпуса штриховой линейки. 	 Отремонтируйте штриховую линейку. 				
	 Недостаточная упругость стального провода каретки внутри считывающей головки штриховой линейки. 	 Отремонтируйте штриховую линейку. 				

Дополнительная информация

III. Принцип конструкции:

Наш кодовый датчик линейных перемещений и цифровой индикатор представляют собой высокотехнологичные продукты на основе комбинирования фотоэлектронной технологии, технологии высокоточной механики, микроэлектронной технологии и компьютерной технологии и т.д. Запрещается производить ремонт данной системы силами пользователей, не прошедших специальное обучение. Далее представлен принцип конструкции:

IV. Схема установки:

Примечания:

- Зафиксируйте шнур питания и сигнальный кабель во избежание спотыкания. 1.
- 2. Высота установки составляет 1 350 мм от пола, на котором стоит оператор.

115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 тел.: +7 (495) 737-08-80 факс: +7 (495) 737-30-89 www.metalmaster.ru

Дополнительная информация

V. Упаковочная ведомость материалов:

- 1. Цифровой индикатор серии SDS6, 1 шт.
- 2. Шнур питания, 1 шт.
- 3. Копия руководства по эксплуатации.
- 4. Копия свидетельства о калибровке.
- 5. Пылезащитный корпус, 1 шт.
- 6. Зажим для провода.
- 7. Кронштейн.

Дополнительная информация

Уважаемые пользователи!

Благодарим за приобретение и использование продукта компании «Guangzhou Lokshun CNC Equipment Ltd.»! Для обеспечения оптимального применения нашего продукта после приобретения внимательно прочитайте следующие указания:

Продукт поставляется с «тремя гарантиями», с ограничением срока замены до 14 дней и сроком бесплатного ремонта по гарантии 1 год (от даты продажи). В случае замены должны прилагаться все дополнительные принадлежности.

Следующие услуги не являются бесплатными:

- 1. Услуги, оказываемые по истечении одного года гарантии.
- 2. Повреждения вследствие несоблюдения требований к эксплуатации, техническому обслуживанию и хранению.
- 3. Повреждения вследствие ремонта неквалифицированными специалистами.
- 4. Отсутствие подтвержденного счета об оплате.
- 5. Повреждения вследствие воздействия на продукт чрезмерных усилий.

Инструкция переведена по заказу ООО «МеталМастер»

Компания ООО «Металмастер» РФ, 115191, г. Москва, 4-й Рощинский проезд д.18, стр. 7 Телефон/факс (495) 737-08-80 Эл. почта: info@metalmaster.ru Веб-сайт: www.metalmaster.ru

Версия: SDS6-V2.0-2011.04.08